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FOREWORD

Science, in general, and physics, in particular, have evolved out of man’s quest to know beyond
unknowns. Matter, radiation and their mutual interactions are basically studied in physics.
Essentially, this is an experimental science. By observing appropriate phenomena in nature one
arrives at a set of rules which goes to establish some basic fundamental concepts. Entire physics
rests on them. Mere knowledge of them is however not enough. Ability to apply them to real
day-to-day problems is required. Prof. Irodov’s book contains one such set of numerical
exercises spread over a wide spectrum of physical disciplines. Some of the problems of the book
long appeared to be notorious to pose serious challenges to students as well as to their teachers.
This book by Prof. Singh on the solutions of problems of Irodov’s book, at the outset, seems
to remove the sense of awe which at one time prevailed. Traditionally a difficult exercise to
solve continues to draw the attention of concerned persons over a sufficiently long time. Once
a logical solution for it becomes available, the difficulties associated with its solutions are
forgotten very soon. This statement is not only valid for the solutions of simple physical problems
but also to various physical phenomena.

Nevertheless, Prof. Singh’s attempt to write a book of this magnitude deserves an all out
praise. His ways of solving problems are elegant, straight forward, simple and direct. By writing
this book he has definitely contributed to the cause of physics education. A word of advice to
its users is however necessary. The solution to a particular problem as given in this book is
never to be consulted unless an all out effort in solving it independently has been already made.
Only by such judicious uses of this book one would be able to reap better benefits out of it.

As a teacher who has taught physics and who has been in touch with physics curricula
at L1 T., Delhi for over thirty years, I earnestly feel that this book will certainly be of benefit
to younger students in their formative years.

Dr. Dilip Kumar Roy

Professor of Physics

Indian Institute of Technology, Delhi
New Delhi-110016.



FOREWORD

A. proper understanding of the physical laws and principles that govern nature require
solutions of related problems which exemplify the principle in question and leads to a
better grasp of the principles involved. It is only through experiments or through solutions
of multifarious problem-oriented questions can a student master the intricacies and fall
outs of a physical law. According to Ira M. Freeman, professor of physics of the state
university of new Jersy at Rutgers and author of ‘‘physic--principles and Insights’” --
*‘In certain situations mathematical formulation actually promotes intuitive understand-
ing....... Sometimes a mathematical formulation is not feasible, so that ordinary language
must take the place of mathematics in both roles. However, Mathematics is far more
rigorous and its concepts more precise than those of language. Any science that is able
to make extensive use of mathematical symbolism and procedures is justly called an exact
science’’. LE. Irodov’s problems in General Physics fulfills such a need. This book
originally published in Russia contains about 1900 problems on mechanics, thermody-
namics, molecular physics, electrodynamics, waves and oscillations, optics, atomic and
nuclear physics. The book has survived the test of class room for many years as is evident
from its number of reprint editions, which have appeared since the first English edition
of 1981, including an Indian Edition at affordable price for Indian students.

Abhay Kumar Singh’s present book containing solutions to Dr. L.E. Irodov’s Problems
in General Physics is a welcome aitempt to develop a student’s problem solving skills.
The book should be very useful for the students studying a general course in physics and
also in developing their skills to answer questions normally encountered in national level
entrance examinations conducted each year by various bodies for admissions to profes-
sional colleges in science and technology.

B.P. PAL
Professor of Physics
LLT., Dellu



PREFACE TO THE SECOND EDITION

Nothing succeeds like success, they say. Now, consequent upon the warm
welcome on the part of students and the teaching fraternity this revised and
enlarged edition of this volume is before you. In order to make it more up-to-date
and viable, a large number of problems have been streamlined with special focus
on the complicated and ticklish ones, to cater to the needs of the aspiring students.

I extend my deep sense of gratitude to all those who have directly or
indirectly engineered the cause of its existing status in the book world.

Patna

June 1997 Abhay Kumar Singh



PREFACE TO THE FIRST EDITION

When you invisage to write a book of solutions to problems, one pertinent question crops up
in the mind that—why solution! Is this to prove one’s erudition? My only defence against
this is that the solution is a challenge to save the scientific man hours by channelizing thoughts
in a right direction.

The book entitled ‘“‘Problems in General Physics’ authored by LE. Irodov (a noted
Russian physicist and mathematician) contains 1877 intriguing problems divided into six
chapters.

After the acceptance of my first book ‘‘Problems in Physics”, published by Wiley
Eastern Limited, I have got the courage to acknowledge the fact that good and honest
ultimately win in the market place. This stimulation provided me insight to come up with my
second attempt—*‘Solutions to I.E. Irodov’s Problems in General Physics.”

This first volume encompasses solutions of first three chapters containing 1052
problems. Although a large number of problems can be solved by different methods, I have
adopted standard methods and in many of the problems with helping hints for other methods.

In the solutions of chapter three, the emf of a cell is represented by & (xi) in contrast
to the notation used in figures and in the problem book, due to some printing difficulty.

I am thankful to my students Mr. Omprakash, Miss Neera and Miss Punam for their
valuable co-operation even in my hard days while authoring the present book. I am also
thankful to my younger sister Prof. Ranju Singh, my younger brother Mr. Ratan Kumar Singh,
my junior friend Miss Anupama Bharti, other well wishers and friends for their emotional
support. At last and above all I am grateful to my Ma and Pappaji for their blessings and
encouragement.

ABHAY KUMAR SINGH
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PART ONE

PHYSICAL FUNDAMENTALS OF MECHANICS

1.1
11

1.2

13

KINEMATICS

Let Y be the stream velocity and V' the velocity of motorboat with respect to water. The
motorboat reached point B while going downstream with velocity (vo + V') and thea returned
with velocity (v' - vo) and passed the raft at point C. Let ¢ be the time for the raft (which
flows with stream with velocity v ) to move from point A to C, during which the motorboat
moves from A to B and then from B to C.

Therefore
L- 1_,,9’111’_‘_’:)1_'_{ o ———— (‘Vo'f'\,")l ..... >
0 v —v()) A v 7 B -—)\10
On solving we get v, = 2% E l —C _"_';

Let s be the total distance traversed by the point and ¢, the time taken to cover half the
distance. Further let 2t be the time to cover the rest half of the distance.

s )
Therefore 5= Vol oOr L= i—;; (1)
and Zm (v + v,))t or U= u 2
2 1 V4V,

Hence the sought average velocity
_ _ s _ 2vi(vy+v)
h+2t [s72v J+[s/(vi+ V)] vi+Vv+2v,

<v>

As the car starts from rest and finally comes to a stop, and the rate of acceleration and
deceleration are equal, the distances as well as the times taken are same in these phases

of motion.
Let Az be the time for which the car moves uniformly. Then the acceleration / deceleration

A ;At each. So,

time is



N

14

<V>T= 2{lwﬁ-m)nl+w (t'At)At

2 4 |
or At = 12— 4<v>t
w
4 <>
Hence At=1T Y 1- = 15s.
wTt
(a) Sought average velocity sm(
<w>=3 200 cm 10 cm/s 29
t~ 20s A4
. . ds yu
(b) For the maximum velocity, @ should be 4
. ds . ' 10 ”a
maximum. From the figure E; is maximum for ,‘ !
all points on the line ‘ac, thus the sought '.“' a/l
maximum velocity becomes average velocity T3
for the line ac and is equal to : 0 10 20 ¢,
bc 100 cm
P 25 cm/s
(©) Time ¢, should be such that corresponding to it the slope % should pass through the
point O (origin), to satisfy the relationship %s —:— From figure the tangent at point d
0

passes through the origin and thus corresponding time = f;= 16s.

1.5 Let the particles collide at the point A (Fig.), whose position vector is 7; (say). If ¢ be the

1.6

time taken by each particle to reach at point A, from triangle law of vector addition :
- ~—> —> - —»

A —>
s, ri-ry= (va=vi)t (1) y Wt
|7 -7l
therefore, (= 7= (2) pug —
[va- v, Py Wt
From Egs. (1) and (2)
- — -
mrarp- (m-vpinzl -
1=nm (e 0 n .
P R - X
of, —=——=3;= 7=s—=37, Which is the sought relationship.
[ri=ral  lva-vq] -
We -have
—p! - —>

From the vector diagram [of Eq. (1)] and using properties of triangle



1.7

Ve ViZ+eP+2vyveosp = 39.7km/br  (2)
v/ v vsin @

d = in0 =
an sin(x-¢) sin0 or, sin v
or 0= sin” ! ysing
vl
Using (2) and putting the values of v and d v
0

0= 19.1°
Let one of the swimmer (say 1) cross the river along AB, which is obviously the shortest
path. Time taken to cross the river by the swimmer 1.

d , (where AB = d is the width of the river) @

i1~ \/ 2 2
V' "Vo

For the other swimmer (say 2), which follows
cross the river.

the quickest-path, the time taken to

d
L= 2
lB ° ' B < x > ¢

I | — I 7
Vo | — / :-:
d y d R —>
. v1 S 4 —
' / —>
) v 7 l 1", —

>

In the time ¢,, drifting of the swimmer 2, becomes
Yo :
X= vyl = -‘;7d, (using Eq. 2) 3)

If ¢, be the time for swimmer 2 to walk the distance x to come from C to B (Fig.), then
x_ Vod : 3 4
== T (using Eq. 3) 4

According to the problem ¢, = £, + 13

d d Vod
o TV iVu

2

v2-v
On solving we get
Vo
U= T = 3 km/hr
"2



1.8

1.10

Let / be the distance covered by the boat A along the river as well as by the boat B acrc
the river. Let v, be the stream velocity and V' the velocity of each boat with respect

water. Therefore time taken by the boat A in its journey

f, =~ ! + !
A Vv V-y
. l l 21
and for the boat B ty= + =
B \/v’z—\% \/v’z—vg \/v’z-vg
t v' M v'
Hence, AL = where n = —
5 VvI- V-l ( " v)
On substitution t,/tg= 18

Let v, be the stream velocity and V' the velocity of boat with respect to water. A
v
;% = N = 2> 0, some drifting of boat is inevitable.

Let v make an angle 0 with flow direction. (Fig.), then the time taken to cross the rive

t= (where d is the width of the river)

d
v sin 0
In this time interval, the drifting of the boat
x= (v cos®+vy)t

= (v'cos(i-o-vo)v,sine

For x_;, (minimum drifting)

d o d Vol —>
70 (cot © + M cosec 0) = 0, which yields V’ —
oS O m — 1 - — 1 J & v
n 2 > X

Hence, 0= 120° 0
The solution of this problem becomes simple in the frame attached with one of the bodies.

Let the body thrown straight up be 1 and the other body be 2, then for the body 1 in the
frame of 2 from the kinematic equation for constant acceleration :

= (cot 0 + v} cosec 0) d T

— — — 1
rlz- ro(u)+vo(12)t+zwut

So, 2™ 17&12) t, (because Wy, = 0 and ;0.(12)" 0)
— —>

or, |r12|- 'V«n)‘t (1)
o -

But  |vgy|= |vz|= v

So, from properties of triangle

Vo12) = \/Vg + V3 =2 vy vy cos (/2 - By)
Hence, the sought distance
|75 ]= v,V 2(1-5in®) £= 22m.
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1.12

5

Let the velocities of the paricles (say ‘71’ and ;2’ ' ) becomes mutually perpendicuiar after

time t. Then their velocitis become

ﬁ
—»! —_ —»  —p! —_ —> »
. Va2
vV, =V +g8L; vy = V481 1)

s -’ —»! —p!
As v; Lv, so, Vv 'V, =0

or, (vi+8t) (v,+gt)=0

2 )
or -v, v, +g°t°=0 ) ]
172 g2 V2,7‘-—'—V2t-?‘_—Vit ——\Y,
Hence, t= ——J—Z'ng 3)

1
Now form the Eq. 7, = ;0’(12) + ;’-&12) t+ 5‘_‘-”12 12

|7y | = |3&12)|t, (because here Wy, = 0 and )?:(12)- 0)

Hence the sought djstance

VitV —— —
I;'Tzl-’ —'g_ ViV, (35|V0(12)|" V) +V,)

From the symmetry of the problem all the three points are always located at the vertices
of equilateral triangles of varying side length and finally meet at the centriod of the initial

equilateral triangle whose side length is a, in the sought time interval (say f).
-—)

Vs

2 = >
0=120 3
Vy 2

Let us consider an arbitrary equilateral triangie
of edge length [ (say).

Then the rate by which 1 approaches 2, 2 approches 3, and 3 approches 1, becomes :

=4 vcos[2E

dt 3
0 4

On integrating : - f dl = 223 f dt
a 0
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1.13

1.14

Let us locate the points A and B at an arbitrary instant of time (Fig.).
If A and B are separated by the distance s at this moment, then the points converge or

point A approaches B with velocity ;dt‘—is— = v - u cos & where angle a varies with time.

On intergating,

0 T
-—fds-f(v-ucosa)dt, f //', B
1 0 -—) . rd
(where T is the sought time.) { v /"
T td

@)

or

l-f(v-uoosa)dt
0

v

As both A and B cover the same distance in x-direction during the sought time interval,
so the other condition which is required, can be obtained by the equation

Ax = f v dt
T
So, uT-fvcosadt @)
0
Solving (1) and (2), we get T= vz_ul"i
-u

One can see that if u= v, or u<yv, point A cannot catch B.

In the reference frame fixed to the train, the distance between the two events is obviously
equal to L Suppose the train starts moving at time = 0 in the positive x direction and
take the origin (x = 0) at the head-light of the train at ¢ = 0. Then the coordinate of first

event in the earth’s frame is
Xy = = wh
172
and similarly the coordinate of the second event is
Xy = %w(t-n:)z-l

The distance between the two events is obviously.
X =X, = l-wr(t+1/2) =0242 km

in the reference frame fixed on the earth..

For the two events to occur at the same point in the reference frame K, moving with
constant velocity V relative to the earth, the distance travelled by the frame in the time
interval T must be equal to the above distance.

Thus Vi=l-wrt(t+1/2)
So, V-1—l:-w(t+'c/2) =403 m/s

The frame K must clearly be moving in a direction opposite to the train so that if (for
example) the origin of the frame coincides with the point x;, on the earth at time 7 it
coincides with the point x, at time ¢ + 7.
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1.15 (a) One good way to solve the problem is to work in the elevator’s frame having the

1.16

observer at its bottom (Fig.).

Let us denote the separation between floor and celing by 4 = 2-7 m. and the acceleration
of the elevator by w= 12 m/s’

From the kinematical formula

1
y= y0+voyt+§wyt2 ¢)) Ayl
Here y=0,y,= +h,voy- 0
/)
and  w, = Wit (5) = Wele ()
- (8- = - (g+w) b-27m
2
So, 0= h+%~{—(g+w)}t2 Tw=1-2m/s
o
or, t= 2h = (07s.
g+w

(b) At the moment the bolt loses contact with the elevator, it has already aquired the
velocity equal to elevator,given by :

vo= (12) (2) = 2-4m/s
In the reference frame attached with the elevator shaft
(ground) and pointing the y-axis upward, we have for

the displacement of the bolt, Vo i
A ~w, 1

= vyt + ;-,lz-(--g)t2
or, Ay = (2-4) (0-7) + % (- 9-8) (07)* = - 07 m.

Hence the bolt comes down or displaces downward relative to the point, when it loses
contact with the elevator by the amount 0-7 m (Fig.).
Obviously the total distance covered by the bolt during its free fall time
2
Yo

- A IR L) S
s= |Ay|+2(2g]- 07m + ©3) m= 1-3m.

Let the particle 1 and 2 be at points B and A at ¢= 0 at the distances /, and [/, from
intersection point O.

Let us fix the inertial frame with the particle 2. Now the particle 1 moves in relative to
this reference frame with a relative velocity 5'1’2 = 171' - ‘7;, and its trajectory is the straight
line BP. Obviously, the minimum distance between the particles is equal to the length of
the perpendicular AP dropped from point A on to the straight line BP (Fig.).



1.17

SV

Y

r
ls 1Z ->
- L a V;
B er——7—=7T0
From Fig. (b), V=V v21+v22 , and tan 0 = A 1)

V)
The shortest distarice
AP = AMsin @ = (OA - OM) sin 0 = (I, -1, cot 0) sin O

AP=|1,-1 V2 V1 vib-vl (using 1)
or = -l = — usin
1"1 ', v21+;22 \ v21+v2: g

The sought time can be obtained directly from the condition that (I, — v, 1) + L-v, 1)?
Lvi+lLv
is minimum. This gives ¢ = 11272,
VitV

Let the car turn off the highway at a distance x from the point D.
So, CD = x, and if the speed of the car in the field is v, then the time taken by the car
to cover the distance AC = AD - x on the highway
AD -x
)
nv C «e—X —> D
and the time taken to travel the distance CB A \

I, =

1

in the field

ViZed
=", ) c‘:
So, the total time elapsed to move the car from point A to B L2\

AD—x+V 124 2

t=t+1y= e ”
For ¢t to be minimum \ B
dt 1 X
—=0 ofr —|-—+—F=—|=0
dx V[ n Vlz-o-?

2.2 42
or P=1242 or xm ———
n r—g——n —1



1.18 To plot x (¢), s (?) and w, (¢) let us partion the given plot v, (f) into five segments (for
detailed analysis) as shown in the figure.
For the part oa:w, = 1 and v = t= v

¢ v,
¥ o
ThusAx(t)=fvdt-fdt-t—2-=s(t) 1+ b .
» 8%y p ) 2 1 e
L 1121314\ 61 /Y
Putting =1, we get, Ax; = 5= Eunit -1
For the part ab : -2 d
w,= O and v = v= constant = 1
t
Thus A, ()= [vodt= [dt= t-1)= 5,0
1
Putting t= 3, Ax, = 5, = 2 unit

Forthe part b4: w =1 and v, = 1 -(t-3)=4-1)=v

t

t2 15

Thus Axs(t)=f(4-t)dt=4t—?—7= 55 (t)
3
Putting =4, Ax;= x;= —;-um't
For the part 44 : v,=-land v, = -(1-4)=4-1
So, v=|v |=1t-4 for t>4
y 2

Thus Ax, = [(1-rydr= 4t-52—-8
Putting t= g, Ax,= -1

'
Similarly s4(t)=f|vx|dt=f(t—4)dt= %2-4t+8
Putting t= 06, 5,= 2\1n41t
For the partd 7 : w,=2and v.= -2+2(t-6)=2(t-7)

v=|v, |=2(7-1) for t< 7
6

Now, Ax(t)=f2 (t-T)dt= 1% 141+ 48
- t
Putting t=4, Axg= -1
6
Similarly ss(t)=f2(7-t)dt= 14¢-12-48
t
Putting t=17, sq=1

On the basis of these obtained expressions w, (¢), x (f) and s (f) plots can be easily plotted
as shown in the figure of answersheet.
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1.19 (a) Mean velocity

1.20

Total distance covered
Time elapsed

s =nR
== - S0cm/s (1)
(b) Modulus of mean velocity vector
Ar] 2R

|<v>|=

Ar - —"‘—- R2cm/s (2)

[ o T3

£

(c) Let the point moves from i to f along the half circle (Fig.) and v, and v be the spe

at the points respectively.

We have %tv— =W,
or, v= vy+w,t (as w, is constant, according to the problem)
4
[ orwna
0 Vot (vp+wt) vy+v
So, <> = - = = ¢
2
fa
0
So, from (1) and (3)
2 " (

Now the modulus of the mean vector of total acceleration

—
[<w>|= -

Using (4) in (5), we get :

~ l<w>|=
(a) we have r=at(l-at)
— dr’
So, v= i
—
and W= dv_ -2a

So, the sought time Ar= -2

As v=a(l-2at)
a(l-2ati)

So, v=|v]=
a(2at-1)

[av] |‘7";’;l_ VotV
At -

(see Fig.) )

fort = —1——

20

1
fort> —
or >20.



1.21

11

Hence, the sought distance

12a 1o
s=fvdt=f a(l-2afd+ f a(at-1Yar
0 1/2a

Simplifying, we get, s= -i%
(a) As the particle leaves the origin at r= 0
So, Ax= x = fvxdt (1)
As e vg(l _i),

T
where vy is directed towards the +ve x-axis
So, v, =V, (1 - %) (2)

From (1) and (2),

t

4 4
= 1-—|dt= 1-—
x fvo( 1:) vot( 21:) 3)
0
Hence x coordinate of the particle at 1= 65.

6
X = 10x6(1—2x5)- 2dcm = 024 m
Similarly at = 10s
10
x= 10x10(1—2x5)—0
and at t=20s
x= 10x20{1 -~ 20 =~-200cm=-2m
2x$5
(b) At the moments the particle is at a distance of 10 cm from the origin, x = + 10 cm.
Putting x= +10 in Eq. (3)
10 = 10:(1-1‘5) or, t>-10t+10= 0,
So, tm = 10*“300‘40=5=\/1‘5“s
Now putting x= -10in Eqn (3)
t
0= 10(1-5)
On solving, t=5+ V35 s

As t cannot be negative, so,

t=(5+V35)s
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1.22

Hence the particle is at a distance of 10 cm from the origin at three moments of time :

t=52ViS s, S5+V35 s

(c) We have \7’-;;1—%
t
vo(l-—) forts
vy 1_1) fort>=
T
[ 4
So s=fv 1--t-dtfortsr=vt(1—9‘21:)
) 0 T 0
T 4
t t
and s=fvo(l—5)dt+fvo(;—l)dt for t>=
0 T
= vyt [1+(1-%)%]/2 for t>7
4 4
t t
oo Juft-ga- frofs-f)a 20em.
0 0
And for t= 8s
5 8

N

! t
o Ja0(1-Ga fr0[t-1)a
0 5
On integrating and simplifying, we get

(A)

1)

s= 34 cm.
On the basis of Eqs. (3) and (4), x (f) and s (¢) plots can be drawn as shown in the answer
sheet.
As particle is in unidirectional motion it is directed along the x-axis all the time. As at
t=0,x=0
So, Ax=x= s, and iV--w
dr
Therefore, v=aVvx=aVs
of we . @ d5 o
’ d 2Vsdt 2Vs
av_ aavs o
T 2vs 2vs 2
dv o’
As, w= Z’ = 7

2
On integrating, f dv = f %dt o, v= %-t

)
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(b) Let s be the time to cover first s m of the path. From the Egq.

=fvdt

2 2,2
o a’t .
s=f ) dt = > 2 (using 2)
0

or t= i‘\/.; 3)

The mean velocity of particle

2\/_/a

f — tdt
v(t)dt aVs
<= f - 2\/—/01 2

1.23 According to the problem

Vdiv = aVv (as v decreases with time)
0 s
or, -f V; dv= afds‘
VO 0
On integrating we get s = —2—v3/2

3a
Again according to the problem

av aVv or—g—gs adt
dt Vv

0

Thus

1.24 (a) As
So,

and therefore
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1.25

which is Eq. of a parabola, whose graph is shown in the Fig.

(b) As r=atizbt’j”
_’
V= it5=ar:2btj" 1)
So, v=Va*(-2bt)’ =Va’*+4b*t*

Diff. Eq. (1) w.r.t. time, we get

—>
w= 4o _opp

dt

So, | w]=w=2b

\7"W’=(ai':2btj")-(—2bﬁ

2bt
or, cos o = ,
\Y a2+4bzt2

(©) Ccos oL =

a
SO tana = —
’ 2bt

o o= tan~ ! 2
b B 2bt

(d) The mean velocity vector

f?dt f(aT:thﬂdt
0

— A —>
<V >= = =ai1-btj
[t t
Hence, |<’\7’>|==\[a2+(-bt)2=\/a2+th:"r
(a) We have
x=atand y=at(l-at) (1)

Hence, y (x ) becomes,

ax ax
a a

y= == 1_.___)= x-%xz (parabola)

(b) Diitferentiating Eq. (1) we get
V.= a and vy=a(1—2at) )

X



1.26

1.27

16

So, V= \/v‘,‘z-rvyz=a\/1+(1-20tt)2
Diff. Eq. (2) with respect to time

w,=0ad w,=-2aa

y
So, ws V wx2+ wy2= 2aa
(c) From Egs. (2) and (3)
We have V’-a,‘—-’l-a(l—Zat)]'_’and tT"==2a0Lj_>
xt 1 rw -a(l-2aty)2aa
SO, COS —= = = 5
4 V2 vw aV1+(1-2aty) 2a0
On simplifying. 1-20t;==1
1
As, ty= 0, th=—
0™ 0= o

Differentiating motion law : x= asinw?¢, y= a(1-coswt), with respect to time,

V,= a®cost, v, = asinwt

So, V=awcosotj+ awsinotj (1)
and v=aw= Const )
Differentiating Eq. (1) with respect to time
-
W= %=—am2sinmt{:-am2cosmtj_. €))

(a) The distance s traversed by the point during the time v is given by
T T
5= fvdt-fawdt- anvt (using2)
0 0

(b) Taking inner product of v and w

2 . . 2 >
sinwt(-i)+amn’coswt—j)

Weget, v-w= (amcosoti+awsinotj) (aw
So, VW= - a® o’ sin wf cos wf + a> @’ sin ot cos ot = 0

. . n
Thus, v.L w, i.c., the angle between velocity vector and acceleration vector equals 3"

Accordiing to the problem

—> >
W= w(-J)
dv, dv,
— = "'—‘x = e
So, W= 0 and w, 7 w 1)
Differentiating Eq. of trajectory, y= ax - bxz, with respect to time
dy_adx _,, dx @)

dt dt dt
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&y
dt

dx
= q —

So, I

x=0 x=0

_Again differentiating with respect to time

d’y adzx_Zb(dx)2_2bx d’x

di? di? dr di?

2
or, -w=a(0)—2b(%§) -2bx(0) (using 1)

dx \/_w_ : -

or, % -V3p (using 1) (¢
\ [w

=2V 5 (¢

Hence, the velocity of the particle at the origin

2 2
- 4x 4y = -\/_‘_"_ 2 W
V= V(dt )x_o"'( dt )x-o =V3*te 5 (using Eqns (3) and (4))
Hence, V= 5%( 1+d%

As the body is under gravity of constant accelration g, it’s velocity vector and displacemen
vectors are:

Using (3) in (2) %‘tz

x= 0

V=1g+gt (L
and A= F= Wi+ 2 g® (P Oate = 0) @
So, <v> over the first ¢ seconds

— —> —>
e e 3)
Hence from Eq. (3), <v> over the first ¢ seconds A y
o
<V>= Y+ 27 4)
2 Vo
For evaluating ¢, take
Vv = (\-%)+§’t)-(17;+§’t)=v3+2(\70>-g7t+g2t2 of
2_ 2 (> 2,2 (t=2) <
or, V= vi+(vpgit+g’t >
0 (t=0) P\QC‘
But we have v= y;at¢t= 0 and Vo

Also at 1= < (Fig.) (also from energy conservation)
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Hence using this propety in Eq. (5)
vg- v§+2(‘7§§)’r+g212

20,8

As t= 0, so, v= -
4
Putting this value of t in Eq. (4), the average velocity over the time of flight
I (]
<V>=vy-g—
g

The body thrown in air with velocity v, at an angle o from the horizontal lands at point
P on the Earth’s surface at same horizontal level (Fig.). The point of projection is taken
as origin, so, Ax= x and Ay=y

(a) From the Eq. Ay= v, t +%wyt2

0= vosinon:-%gt2

2vyysina

8
(b) At the maximum height of ascent, v, = 0

As t = 0, so, time of motion T =

so, from the Eq. V2

b= v(z,y+2wyAy

0= (vpsina)-2gH

v% sin” o

28
During the time of motion the net horizontal displacement or horizontal range, will be
obtained by the equation

Hence maximum height H =

1 2
Ax= vy t+-w."T

2
2 .

1 2 Vysin2 o
or, R=vocosat-5(0)r =V00050”=T
when R=H

v?, sin o vg sin® o -1
= or tana= 4, so, a= tan 4
8 28

(c) For the body, x (¢) and y (¢) are
(1)
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and y=1v, sinmt--;—gt2 )
Hence putting the value of ¢ from (1) into (2) we get,

2 2
)-ana-——&i——

2

y= vysina )
2v(2,cos o

1
vocosa)-Zg(vocosa

Which is the sought equation of trajectory i.e. y (x)

(d) As the body thrown in air follows a curve, it has some normal acceleration at all the
moments of time during it’s motion in air.

At the initial point (x = 0,y = 0), from the equation :

2
v
w, = (where R is the radius of curvature)

n R ’
B
gcosa= R, (see Fig.) or Ry = 2005 O

At the peak point v, = 0, v = v, =y, cos o and the angential acceleration is zero.

2
v
Now from the Eq. W= 7
vg cos’ vg cos’ o

=2 or R=
8 R p

Note : We may use the formula of curvature radius of a trajectory y(x), to solve
part (d),

2 3
2
[1+(dy/dx) ]
" TE
We have, v, = vycos o, v, = Vysina - gt
As v :l‘ all the moments of time.
Thus V= v,2-2gtv0sina+g2t2
dv, g2
Now, W= 2 2vdt( 2) = ( t - gv,sina)
- By sina-gH=-g2
= Vt(vosmoc gt gv'
Ivzl
Hence (w | =g
Now w, =V - 2 g gZ_Z_
vx
or w, = g-‘-)-'- (where Ve= Vv, -V
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As v 3‘, during time of motion
12
wV == w‘ W - g —vz

On the basis of obtained expressions or facts the sought plots can be drawn as shown in
the figure of answer sheet.

The ball strikes the inclined plane (Ox) at point O (origin) with velocity vy = V 2gh (1)
As the ball elastically rebounds, it recalls with same velocity v, at the same angle o from
the normal or y axis (Fig.). Let the ball strikes the incline second time at P, which is at
a distance [/ (say) from the point O, along the incline. From the equation

1
y= voyt+—2—wyt2

0= v(,cosovc—%gcosou2

where T is the time of motion of ball in air
while moving from O to P.

2v,
As tT= 0, so,1:=-é-— 2)

Now from the equation.

1 2

2

I = . 1 . 2
= Vpsinav+sgsinat

] ) 2vel 1, 2v,
so, =y sina|—|+=gsina|—
4v?sina

= ————— (using 2
p (using 2)

4 (2 gh) sin a

Hence the sought distance, [= = 8hsina (Using Eq. 1)

Total time of motion

2y, sin o ) 1g 981
T= p or sino = 2v0=2x240 (1)

and horizontal range

R 5100 85
R= vycosat or cosa= T 0% At ¥))]

H

From Egs. (1) and (2)
©08’v (85
(480>  (41%)°

On simplifying v* - 2400 v* + 1083750 = 0
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1.34

Solving for > we get :

P 2400 = V 1425000 2400 + 1194
= = 2

Thus T= 42-39s = 0-71 min and
T= 2455 s = 0-41 min depending on the angle a.

Let the shells collide at the point P (x, y). If the first shell takes s to collide with second
and At be the time interval between the firings, then

x=vycos0;t=v,cos0,(t-At) (1)
and y= vosinﬂlt-%gt2 f‘y
= vosinez(t-At)——;-g(t-At)z )

At cos 0,
cos 0, - cos 0,
From Egs. (2) and (3)

2 vysin (0, - 0,)

At = as Ar= 0 0
g (cos 6, + cos 0,)

From Eq. (1) t= 3

According to the problem
(a) %-—- vy or dy= v,dt

y
Integrating f dy = Vof dt or y=v,t 1)
0 0
dx .
And also we have Z=y o dc= aydt= avytde (using 1)
' 1 1ay’
So, fdx= avoftdt, or, x= —av0t2= —-a—L(using 1)
4 2 2 vy,
(b) According to the problem
v,=Vpand v, = ay 2
So, v=Vi2e2 =V 2eay
2
Therefore w,= % ______X_____X ¢y

Vig+ay” dt '\/14-(ay/v0)2

Diff. Eq. (2) with respect to time.
dv, dv,

y
——d—t—' Wy 0 and —3—{- W aa— avo

SO, Wslwxls avo
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4 av
Hence W,,=V;2—V,-Va2v(2,— a'y’ - 0

1+ (ay/v0)2 Vis+ (ay/v0)2

(a) The velocity vector of the particle

So,

From (1)

And

Integrating

V= a;'_:-bxf.
dx _ éx
d : bx

x t
fdxsafdt or, x= at
0 0

dy = bxdt= batdt

t

fdy= abftdt or, y= —;-abtz

From Egs. (2) and (3), we get, y= -Z—I;—xz

(b) The curvature radius of trajectory y (x) is :

3
[1+(dy/dx)2 ]2

| &y | d l
Let us differentiate the path Eq. y = —Z%x:’ with respect to x,
dy_b__,dy_b
dx a d x2 a

From Egs. (5) and (6), the sought curvature radius :

3

i

In accordance with the problem

But

So,

or,

So,

Hence

- —>
w,=a-T

vdv
W= or vdv = w,ds

vdv= (@ t)ds=a-dr

vdv= ai-dr= adx (because a is directed towards the x-axis)

v

X
fvdv= afdx
[

0

V= 2ax or, v=V2ax

21

1)

)

G)

4)

©)

(6)
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1.37 The velocity of the particle v= at
dv

S —_— -
® da- "=
2
And LA .‘f_f_ -
¥am B= R (using v = ar)
From s-fvdt
t
1
2nRn=a|vdt= —2—at
0
2
So, 4xm 1t~
a R

From Egs. (2) and (3) w, = 4man
Hence w=V w?+w?

= \/a7+(4:ta1r])2 =aV 1+16J|2§T|2 = 0-8 m/s?

1.38 According to the problem

[wel=|w,]
2
For v (¢), :&—‘:—v—-%

Integrating this equation from vp< v< v and O< r< ¢

v t
dv _1 Yo
f Z R dt or, v= 1 s
% + R
Now for v (s), - vdiv ; , Integrating this equation from vyps vs v and 0s s s
S0, f‘—-— fds or, ln—a-z
Hence v=y,e - /R
(b) The normal acceleration of the point
2 2 _-2/R
Wy o o (using 2)

And as accordance with the problem

|WII= Iwnl and wtat'!'wnan

2
v,
so, w=\/7w"=\/7-1-3 - 2R \/—-—

@)
2

)

@



1.39

1040

141

23

From the equation v= aVs

dv a ds a a2
e Y T A T

oo ds
" R R
As w, is a positive constant, the speed of the particle increases with time, and the tangential
acceleration vector and velocity vector coincides in direction.

Hence the angle between v and W is equal to between w,;; an w, and o can be found

w 2
by means of the formula : tanaal AN a2S/R, 2s
Iw,|  4*2 R

From the equation l=asinwt

ﬂ* V= aOCOsSW!
dt

So, w,= %- -amzsincot, and 1)

V2 a W cos " wt (2)

(a) Atthe point /= 0,sinw¢= 0 and cosws= x 1 so, wt= 0, & etc.

@’ o’

R
Similarly at/= + g, sinwf= =+ 1 and coswt= 0, so, w,= 0
2

Hence W= W =

Hence w=|w|=aw

As w,= a and at t= 0, the point is at rest
So, v(f) and s(f) are, v=at and s = %at2 1)

Let R be the curvature radius, then

2
wo=La at? _ 235 (using 1)

R R R
But according to the problem
w, = bt*
2,2 2 2
So, bt*= iﬁ‘-— o, R= ;“;— 55 (using 1) @)

Therefore w=Y w?+w? = V a® + (2as/R)? = Va+ (4bs2/a2>2(using 2)

Hence w= a\/1+(4bs2/a?’)2
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1.42 (a) Let us differentiate twice the path equation y (x) with respect to time.

g2t ool

dt dt’ dt d?

Since the particle moves uniformly, its acceleration at all points of the path is normal and
at the point x = 0 it coincides with the direction of derivative d y/dt> Keeping in mind

that at the point x = 0, ol v,
We get W= é.zl’. =-2avV=w
dt
x=0
Vv 1
So, w, -2av?al —, Of R= —

R 2a

Note that we can also calculate it from the formula of problem (1.35 b)
(b) Differentiating the equation of the trajectory with respect to time we see that

bx (z +a y :i% 1)
which implies that the vector (b xI+ a yﬂ' is normal to the velocity vector
? = %x- 1+ -‘% J which, of course, is along the tangent. Thus the former vactor is along
the normal and the normal component of acceleration is clearly

bzxgz—x-+ azyéz—y-
dr’ dr

W, =
" (bx+ay )1/2

onusing w =w-n/|n].Atx=0, y==x bandsoatx=0

s
W ar

x= 0

Differentiating (1)

2 2
2 dx 2 dx dy
() @) A3

Also from (1) £%-Oatx-o
So ( —) = = v (since tangential velocity is constant = v )

dt

2

A8}

Thus (%})- + —v2

bv2v2

w - =
¢ R

and A

This gives R = a°/b.
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Let us fix the co-ordinate system at the point O as shown in the figure, such that the
radius vector 7 of point A makes an angle 6 with x axis at the moment shown.

Note that the radius vector of the particle A
rotates clockwise and we here take line ox as
reference line, so in this case obviously the y

. do .
angular velocity w= | -——| taking

dt
anticlockwise sense of angular displacement as
positive.

Also from the geometry of the triangle OAC
R r

sin® sin(n-20)

Let us write,

r= rcosei-:-rsinej—:: 2Rcos29,7-’r Rsin26j_'

Differentiating with respect to time.

—
dr — . do - do -
= orve 2R2cos0(~-sin9) o i+2Rcos20 )

or, r= 2R cos 0.

or, 7= 2R(%)[smzeﬁmszeﬁ

—» . - 2,2
o, v=2Rw(sin208i-cos“0j)
So, |v] or v= 2wR=04m/s.

: : dv
As o is constant, v is also constant and w, = i 0,

2 2
1 4 ( 2R ) 2 2

So, W= W= o= S 4w°R= 032 m/s

Alternate : From the Fig. the angular velocity of the point A, with respect to centre of

the circle C becomes
d(20) , (=48
dt dt

Thus we have the problem of finding the velocity and acceleration of a particle moving
along a circle of radius R with constant angular velocity 2 w.

)-2(0 = constant

Hence v=2wR and
2 2
Vv ( 20R ) 2
W = wn -= —R— = R - R
Differentiating ¢ (¢) with respect to time
d
“h=w,=2at 1)

For fixed axis rotation, the speed of the point A:

v
v=wR=2atR or R= T 2
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Differentiating with respect to time

W, = d_ 2aR= l;—,(using 1)

dt

v? 2 .
But e R et 2atv (using 2)
So, w--\v/w,2+w,iZ --\[(v/t)2+(2atv)2

-XV1i+da’s?

t

The shell acquires a constant angular acceleration at the same time as it accelerates linearly.
The two are related by (assuming both are constant)

w_ B
! 2=xnn
Where w = linear acceleration and f =_angular acceleration

Then, w=V2:f2nn= VZ--‘-;’—(ZJM)2

But 2= 2w, hence finally
2nnyv
l

w =

Let us take the rotation axis as z-axis whose positive direction is associated with the
positive direction of the cordinate ¢, the rotation angle, in accordance with the right-hand
screw rule (Fig.)

(a) Defferentiating ¢ ( ¢ ) with respect to time.

do

$2

'27"“'3’”2' , (1) and
d’e do,
7= = B,= -6b1 2)

From (1) the solid comes to stop at At = ¢ =

Ny

3

The angular velocity = a-3bt>, for 0stsVa/3b

f(l)dt 0 3
So, <wo>= - =[at-bt"]
Jar Vajag °
t

Similarly B = |B,|= 6b¢ for all values of «.

b

(e

73b
4 / Va/3b = 2a/3
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Va/3b
6bt dt

So, <f>= Iﬂdt- - = V3q)

fdt a/3b

Ve,

(b) From Eq. (2) B, = - 6b¢
So, (B,),= Va/3b = - 6b 55--2\/—
Hence ﬁ' l(ﬂz)'\/;;;?b—ls ZVBGB

Angle o is related with |w‘| and w, by means of the fomula :

tana = ——, where w,= ©2R and |w,|= BR 1)

I,I

where R is the radius of the circle which an arbitrary point of the body circumscribes.

From the given equation 3 = % = at (here f = %—?— » as P is positive for all values of 7)

o t
Integrating within the limit{d(o- aftdt or, eo--;-at:2
()}

2

2 2.4
2 at at
So, w,-mRs(-—i—) R= y) R
and |w,|=BR= atR
Putting the values of |w,| and w, in Eq. (1), we get,
2.4 3 3
a‘t"R/4 at 4
tango = IR - 2 or, t= {(a)tana]
In accordance with the problem, fi, < 0
Thus - -‘fl—(;)- = k Yo , where k is proportionality constant
dw r kt
or, - -‘/:- k-[dt or, Vo = \/(0_0- ) (1)
2 Y&y

When @ = 0, total time of rotation f= T = T
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2Vwy/k
f (w0+——--—kt\/_u;;)dt
fu)dt 0 4

Average angular velocity < @ > =

2.3
chce<w>-[m0t+£-l—2£—-—-;£vmo tz] /2———'-000/3

1.49 We have w=wy-a@ = —df

Integratin this Eq. within its limit for (@) ¢

®

¢ w, -k
f—‘—i—qz——=fdt or, In —-9——-—-?-= -kt
b Wo-ko w,

®
Hence p= _IEO_( 1-e*) ¢))

(b) From the Eq., ® = w, - k¢ and Eq. (1) or by differentiating Eq. (1)

W= ek

1.50 Let us choose the positive direction of z-axis (stationary rotation axis) along the vector
B o In accordance with the equation

do, dw, 8

dt z “deo z ZA
or, w,dw,= B, dp=fcospdq, | wyz
Integrating this Eq. within its limit for ﬁz

, ()

N ) . N2
or, fdwz= Bofcosq)dq)

0 0

>
Sv

2
or, -EZ— = Bysing

Hence o,= 2z V2f;sing

The plot w, (p) is shown in the Fig. It can be scen that as the angle ¢ grows, the vector
o first increases, coinciding with the direction of the vector B'; (w, > 0), reaches the maximum

at @ = /2, then starts decreasing and finally turns into zero at ¢ = 7. After that the body
starts rotating in the opposite direction in a similar fashion (w, < 0). As a result, the body

will oscillate about the position ¢ = /2 with an amplitude equal to /2.
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1.51 Rotating disc moves along the x-axis, in plane motion in x — y plane. Plane motion of a
solid can be imagined to be in pure rotation about a point (say /) at a certain instant
known as instantaneous centre of rotation. The instantaneous axis whose positive sense is
directed along @ of the solid and which passes through the point /, is known as instantaneous

axis of rotation.
Therefore the velocity vector of an arbitrary point (P) of the solid can be represented as :

— - —»

Vo= O XFp (1)

On the basis of Eq. (1) for the C. M. (C) of

the disc A%
Vem BXTy 2

. — rag
According to the problem v 1%: and

1t Kie. ®Lx-y plane, so_to satisy the
Eqn. (2) 7, is directed along (- j ) Hence point

I is at a distance r, = y, above the centre of () i

the disc along y - axis. Using all these facts
in Eq. (2), we get
Y

Vo= wy or y--(-of— (3)

(a) From the angular kinematical equation

W, = Wy, + Bz f (4)
o=t
On the other hand x = v¢, (Where x is the x coordinate of the C.M.)
X
or, t= = )

From Egs. (4) and (), w = P;{

v, v v2
Using this value of o in Eq. (3) we get y= —< = Bx/v Bx ( hyperbola )
(b) As centre C moves with constant acceleration w, with zero initial velocity
So, X= %wtz and v, = wt
2x
Therefore, ve=wy-, - V2xw
V. V2Zwx
Hence y= -(;)5- 2(:'! (parabola)
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1.53

The plane motion of a solid can be imagined as the combination of translation of the C.M.
and rotation about C.M.

— —_ -
So, we may write v, = Vo +V, =
— — - y
= Ve +WXT, o (1) and
W= Wet+ W, o /
> 2 - - —>
=Wet0 (-r,c)+(Bxr,c) (@ A

T+c is the position of vector of A with respect to C.
In the problem v, = v = constant, and the rolling is without slipping i.e., Ve=Vv=0R,
So,w-= 0 and B = 0. Using these conditions in Eq. (2)
2
—

2, 2 A %
Wo=0(-rc)=0"R(-u,.)= -l-‘;-(—uAC)

A -
Here, u, . is the unit vector directed along r, ..

2

v NPT A .
Hence w, = R and w, is directed along (- u, ) or directed toward the centre of the

wheel.

(b) Let the centre of the wheel move toward right (positive x-axis) then for pure tolling
on the rigid horizontal surface, wheel will have to rotate in clockwise sense. If w be the

v
angular velocity of the wheel then w = _I—tc— = k‘j—

Let the point A touches the horizontal surface at ¢t = 0, further let us locate the point A
atr= 1,

When it makes 0 = o ¢ at the centre of the wheel.
From Eqn. (1) Vo= Vot B X Fap
- - = Ee
= vi+w(-k)x[RcosO(-j)+RsinO(-i)]
or, V,=VitwR[coswt(-i)+sinwtj ]

rae rad
= (v-coswf)i+vsinwtj (asv= wR)

So, v, = \/(v - v cos (n)t)2 + (v sin (nt)z-

= vV 2(1-cosor) = 2vsin(0r/2)

Hence distance covered by the point A during T= 2 n/w
2n/w

s-vadt-j‘szin(mt/Z)dts %- 8R.
0

Let us fix the co-ordinate axis xyz as shown in the fig. As the ball rolls without slipping
along the rigid surface so, on the basis of the solution of problem 1.52 :
- —» —» —»
Vo=V, +wxr, =0
—> - — >
v.,=oR and w1t (-k) as v tti }

Thus (1)



31

®.+Pxr.=0

and -+ B % —» — o C
w,= PR and P11 (-k) as w, 11

At the position corresponding to that of Fig., in

accordance with the problem,

W.= W, SO Vv, = Wt Iy
v X
and 0= == and B = % (using 1) y

R R

(a) Let us fix the co-ordinate system with the frame
attached with the rigid surface as shown in the Fig.

As point O is the instantaneous centre of rotation of the ball at the moment shown in Fig.
S0, ‘70. = (,

Now, v, = Vet ®X Tac
> PSP rae
= Voi+®(-k)xR()= (vo+R)i
So, v,=2Voi= 2wti (using 1)
Similalry vg= v+ @ xrge= vei+w(~k)xR (i)
™ rs O o
= Voi+@R(~j)= vei+vo(-j)
— -
So, vy=V2 v, =V2 wt and §;is at an angle 45° from both iand j (Fig.)

(b) W= We+ 0 (- 75, ) + Bx Toc
2 —» v%‘ A .
=0 ("roc)""RT' (- upe ) (using 1)

A . 3 -
where u, is the unit vector along 7,

2 2.2
Vo

directed towards the centre of the ball

(using 2) and Wy is

Now W, = Wy + @ (- 74 ) + Bx Ty ) 0 2%
= wit@?R(-j)+P(-k)xRj

2 —

= (W+ﬁR)l+‘R‘(—]) (using 1) = 2wz+T(—))

4.4 2\2
wt
o wow V4w S = 2 “(23)

Similarly Wy = W, + @2 (=7pc ) + BX Fpe

- witwR(i)+B(-k)xRE)

2 P
= |v-%|i+BR(=)) (using 1)
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- (w- w;tz) i+ w(—jT(using 2)

So, WB=‘\/(w—~”i2~tj)2+w2

R

1.54 Let us draw the kinematical diagram of the rolling cylinder on the basis of the solutiol
of problem 1.53.
A Va2V, We+/37

\

v We

fr

0

As, an arbitrary point of the cylinder follows a curve, its normal acceleration and
radius of curvature are related by the well known equation

2
W= &
2
. Va
so, for point A, Wam ™ R
A
V2
or, R, = —5 = 4r (because v, = wr, for pure rolling)
r
Similarly for point B,
V5
Yae) = R
VZv )
w’r cos 45° = ( R ) )
B
2
or, RB-Z\/T——ZQ-- 2V2r
o‘r

1.55 The angular velocity is a vector as infinitesimal rotation commute. Then the relative angular
velocity of the body 1 with respect to the body 2 is clearly.

- —> -—

as for relative linear velocity. The relative acceleration of 1 w.rt 2 is

&3,
%),
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where S’ is a frame corotating with the second body and S is a space fixed frame with
origin coinciding with the point of intersection of the two axes,

X AN A
ut 7 S= 5 S'+w2xml

= 0 as the first body rotates
s

i,
@)

Since S ' rotates with angular velocity W; . However (

with constant angular velocity in space, thus
E» —> -
12 = (Dl x (.02.

Note that for any vector b, the relation in space forced frame (k) and a frame (k') rotating

with angular velocity @ is
- ‘d“iq + 3)( F
dt
K K
2T

a5
dt

Wehave @ = ati+bt J 1)

So, o=V (a)+ (btz)2 , thus, ®|,_ 1o, = 7.81rad/s

Differentiating Eq. (1) with respect to time

—>

y.%?-ammr )
So, B=Va+(2bt)?
and Bl,. 10, = 13 1ad/s?

g E’g (ati+b’j)-(ai+2btj)
OB V@?+ oV i)

(b) COS O =

Putting the values of (@) and (b) ,aﬂd'taking t= 10s, we get
am 17°

(a) Let the axis of the cone (OC) rotates in anticlockwise sense with constant angular

velocity @ " and the cone itself about it’s own axis (OC) in clockwise sense with angular
velocity ('6:, (Fig.). Then the resultant angular velocity of the cone.

a3, 0

As the rolling is pure the magnitudes of the
vectors @ and EB:, can be easily found from
Fig.

, v
o' = g Yo v/R @)

As @ L@y, from Eq. (1) and (2)
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w=Va’+w}

v 2 fy\2 v
v(Rcotot) +(R) -Rcosa-2-3rad/s

(b) Vector of angular acceleration

do d@ +@y)
B= = o (as w = constant.)

The vector ‘T;o which rotates about the OO’ axis with the angular velocity @ I, retains i
magnitude. This increment in the time interval dt is equal to

|d @y | = oy o' dt or in vector form d @y = (® x oy ) dr.

Thus B= o xw, G
The magnitude of the vector Fs equal to

B= o wy(as ® Lwy)

LA A l,-z—tanm- 2:3rad/s

So, B.RcotaR R?

1.58 The axis AB acquired the angular velocity

@ =B, M
Using the facts of the solution of 1.57, the >
angular velocity of the body W

w= Vol +w?
= Vm§+ﬂﬁt2 = (-6 rad/s

&
i

=

o~

And the angular acceleration.

A _d@ +8) dJ& 43

B- dr = dt dr T dr
d(,l—i; —' d(-:;,
But T-m x @y, and 7 - Bot

So, B= (Bytx )+ Py

As, BoLy so, B=V (wyByt)’+ P = B,V 1+(wyt)? = 0-2rad/s>
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THE FUNDAMENTAL EQUATION OF DYNAMICS

Let R be the constant upward thurst on the acrostat of mass m, coming down with a
constant acceleration w. Applying Newton’s second law of motion for the aerostat in
projection form

F,= mw,
mg-R = mw 1)
Now, if Am be the mass, to be dumped, then using the Eq. F, = mw,
R-(m-Am)g= (m-Am)w, @
2 mw

From Egs. (1) and (2), we get, Am = g+w

Let us write the fundamental equation of dynamics for all the three blocks in terms of
projections, having taken the positive direction of x and y axes as shown in Fig; and using
the fact that kinematical relation between the accelerations is such that the blocks move
with same value of acceleration (say w)

mog-T,= myw 1 x AN, th
) n 1 IS

and T,-lkm,g= myw 3) 777777 /ﬁ/)’cr// /ln Iffrz
The simultaneous solution of Egs. (1), (2) and T v ! m
(3) yields, 1 m g 23

e LMok +m)] 1 |

& my+m; +m, ? l
d T A +k)m,

an 2% o e, 28 Mo

As the block m, moves down with acceleration w, so in vector form
w [mo'k(m1+m2)]§’
my+m; +m,
Let us indicate the positive direction of x-axis along the incline (Fig.). Figures show the
force diagram for the blocks.

Let, R be the force of interaction between the bars and they are obviously sliding down
with the same constant acceleration w.
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1.62

Newton’s second law of motion in projection form along x-axis for the blocks gives :

mygsinoa -k m gcosa+R=mw 1)

mygsina-R-k,m,gcos o= m,w ()
Solving Eqgs. (1) and (2) simultaneously, we get

. kym, +k,m,
w=gsmo-gcosoa————— and
m, +my
m (k,-k)gcosa
R= 1M k) g 3
m, +m,
(b) when the blocks just slide down the plane, w= 0, so from Eqn. (3)
. kym +kym,
gsina-gcosa—= ()
m, +my
o, (m;+ my)sina = (k, m; +k,m,)cos a
kym, +
Hence tano = (kymy + by m)
m, +m,
Case 1. When the body is launched up :
Let k be the coefficeint of friction, 4 the velocity of projection and [ the distance traversed
along the incline. Rétarding force on the block = mg sin o + kmg cos o and hence the
retardation = gsin a + kg cos o.
Using the equation of particle kinematics along the incline,
0= u’-2(gsina+kgcosa)l
2
u

o I= 2(gsina+kgcos ) (1)
and O=u-(gsina+kgcosa)t
or, u= (gsina+kgcosa)t 2)
Using (2) in (1) /= %(gsina+kgcosa)t2 3)

Case (2). When the block comes downward, the net force on the body
= mg sin a. — km g cos o and hence its acceleration = gsin o - k g cos a
Let, t be the time required then,

= %(gsina-kgcosa)t’z @

From Egs. (3) and (4)
i_ sin a - kcos o
¢? sinoa+kcosa

But i, = :’1]— (according to the question),

t
Hence on solving we get

2
k= —"—2 2—3tana= 0-16
n +
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163 At the initial moment, obviously the tension in the thread connecting m; and m, equals
the weight of m.,

.(a) For the block m, to come down or the block m, to go up, the conditions is
2 ; 10 gO up
m,g-T20 and T~m, gsina-fr20

where T is tension and f, is friction which in the limiting case equals km,g coso. Then

or m,g~-m,sino>km, gcosa
or T-2->(kcos01+sinot)
m,

(b) Similarly in the case
m;gsina-m,g>fr

or, m, gsin a. - m, g > km, g cos o

ng_

or, —m—2-< (sin o - k cos o)
m,

(c) For this case, neither kind of motion is possible, and fr need not be limiting.

m
Hence, (k cos a + sin o) > —m—2> (sin a - k cos )
1

1.64 From the conditions, obtained in the previous problem, first we will check whether the
mass m, goes up or down.

Here, m,/m, = m > sin & + k cos a, (substituting the values). Hence the mass m, will come
down with an acceleration (say w). From the free body diagram of previous problem,

m,-g-T=m,w 1)
and T-m gsina~-km gcoso= m;w (2)
Adding (1) and (2), we get,
myg-m;gsina—-km,gcosa= (m; +my)w
_ (my/m; -sina-kcosa)g (n-sina-kcosa)g
B (1 +my/m)) 1+7
Substituting all the values, w= 0048 g~0-05g

As m, moves down with acceleration of magnitude w= 0.05 g > 0, thus in vector form
acceleration of m, :

—»

—a-(n-sina—kcosa)g_ —
W, 1+n 0.05 g.

1.65 Let us write the Newton’s second law in projection form along positive x-axis for the
plank and the bar

fr=mw,, fr=m,w, 1)
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1.66

1.67

At the initial moment, fr represents the static
friction, and as the force F grows so does the
friction force fr, but up to it’s limiting value

Unless this value is reached, both bodies moves - fp
as a single body with equal acceleration. But My
as soon as the force fr reaches the limit, the  ///7/// /.

bar starts sliding over the plank i.e. w2 w,.
Substituting here the values of w, and w, taken from Eq. (1) and taking into account that

km
f,= km, g,weobtain, (at - km, g)/m, 2 —m—z- g, were the sign "=" corresponds to the moment
1

t= 1, (say)
kgm,(m. +
Hence, o= g my (my + my)
am,
- km, g
If t<ty then w = (constant). and

my
w, = (at - km, g)/m,
On this basis w, (f) and w, (f), plots are as shown in the figure of answersheet.

Let us designate the x-axis (Fig.) and apply F,= m w, for body A :
mgsina-kmgcosa=mw

or, w= gsina-kgcosa

Now, from kinematical equation :

Iseca= 0+(1/2) wt?

or, t=V2Iseca/(sina -kcosa)g
; N f
=V21l/(sin2a/2-kcos*a) g r
(using Eq. (1)).
sin 2 o 2
d( > -kcos a) mg
foret . , Ta =0 &
—

ﬁ-l
i.e. —z-—c—q-sﬂ+2koosasina-0 ‘

2

or, tan20-—%=a=49°

and putting the values of a, k and [/ in Eq. (2) we get ¢, = ls.

Let us fix the x —y co-ordinate system to the wedge, taking the x — axis up, along the
incline and the y - axis perpendicular to it (Fig.).
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Now, we draw the free body diagram for the

bar.

Let us apply Newton’s second law in projection
form along x and y axis for the bar :

Tcosp-mgsina-fr=0 1)
TsinB+N-mgcosa=0
or, N= mgcosa-Tsinf 2)
But f, = kN and using (2) in (1), we get

T= mgsin a+ kmg cos a/(cos § + k sin ) 3)

For T, the value of (cos B + ksin B) should be maximum

d (cos B + ksin B)
dp

Putting this value of § in Eq. (3) we get,

So,

=0 or tanP =k

T m g (sin o + k cos o) m g (sin o + k cos a)

1 IVL+E? + k2 IV + K2 V1 + k2

First of all let us draw the free body diagram for the small body of mass m and indicate
x — axis along the horizontal plane and y - axis, perpendicular to it, as shown in the figure.

Let the block breaks off the plane att= ¢, i.e. N= 0

So, N=mg-atsino=20

y F
or, zo-;—;—”i-f; 1) ‘ . oL

From F_ = mw,, for the body under

investigation : T/77777777V77777777
md y/dt = atcos a ; Integrating within the ¥
limits for v (£) 'mg

mfdvxa acosaftdt (using Eq. 1)
0 0

So, ve =t 2
Integrating, Eqn. (2) for s (¢)
3
acosa t
S= oy 3 3)
Using the value of ¢ = ¢, from Eq. (1), into Egs. (2) and (3)
mg- cos a. m? g cos a

V= 3 and s = 3

2asin“a 6 a*sin® o
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1.69 Newton’s second law of motion in projection form, along horizontal or x - axis i.e.

1.70

1.71

F,.= mw, gives.

F cos (as) = mvé_}’_ {as a = as)

ds AN
or, F cos (as)ds = mvdv F
Integrating, over the limits for v (s) KoL
o ) r.’....). -------- > X
F v
) €08 (as)ds = Y 77777777\7777777

or VR‘/2Fsina ‘ymg‘
ma

= V2gsina/3a (using F = %g)

which is the sought relationship.
From the Newton’s second law in projection from :
For the bar,

T-2kmg= 2m)w
For the motor,
T-kmg= mw
Now, from the equation of kinematics in the frame of bar or motor :

l= -;—(w+w’)t2

From (1), (2) and (3) we get on eliminating T and w
t="V2/(kg+3w)

T T,

b

2m 7

STITTTITTTTI 7 7777777777 777777 77 ////// £

fr r

)
2

@)

Let us write Newton’s second law in vector from F = m w, for both the blocks (in the

frame of_Eround)
T+m1g-m1w1 @)
T+myg= my ¥, @
These two equatlons contain three unknown
quantities Wy, W, and T . The third equation

(>

-l
is provided by the kinematic relationship '7'-> A *7
between the accelerations :
W= Wot W , W= Wo-W  (3) m
where W is th acceleration of the mass m, & N

with respect to the pulley or elevator car.
Summing up termwise the left hand and th.e ,m'_g.
right-hand sides of these kinematical equations, we get

’
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Wi+ Wy = 2w @
The simultaneous solution of Eqs-(1), (2) and (4) yields
(ml—m2)§’+2m2‘7%

—
W1=

m, m,
Using this result in Eq. (3), we get,
— My -m,

—> —>
w = (g-wy) and T=
m; +m, m; +m,

(Wo—?)

m; —-m,

Using the results in Eq. (3) we get W = (8~ wy)

m; +m,
(b) obviously the force exerted by the pulley on the celing of the car

F= _2—>= 4m1m2

(8—-w,)
m, +m, £=Wo

Note : one could also solve this problem in the frame of elevator car.

Let us write Newton’s second law for both, bar 1 and body 2 in terms of projection having
taken the positive direction of x, and x, as shown in the figure and assuming that body 2

starts sliding, say, upward along the incline
T,~-mygsina=m;w 1)
myg-Tp=mw 2

For the pulley, moving in vertical direction
from the equation F,= m w,

(as mass of the pulley m, = 0)
or I,=2T, 3)

As the length of the threads are constant, the
kinematical relationship of accelerations
becomes

w= 2w, 4
Simultaneous solutions of all these equations yields :
m, .
2g|2 o —sina
1 2g(2m-sina)
W= m - @4n+1)
( 424 1)
m

As m > 1, w is directed vertically downward, and hence in vector form
= 22 (2m - sin o)
4n+1
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1.73 Let us write Newton’s second law for masses m;, and m, and moving pully in vertical
direction along positive x - axis (Fig.) :

mg-T=mw, €)) —Wo —> X1
m,g-T=mw, 2
T,-2T= 0(@asm= 0) 5
or T,=2T 3)

Again using Newton’s second law in projection
form for mass m, along positive x, direction

(Fig.), we get

T, = myw, 4
The kinematical relationship between the
accelerations of masses gives in terms of
projection on the x - axis
W+ Wy, = 2w, o)

Simultaneous solution of the obtained five equations yields :
. = [4m m;+my(m -m,)]g
17 4mymy+my(m, +m)

In vector form

— [4’”1’”2*’”0(”’1"”2)]?
"1 T4 m, my+ my (m, + my)
1 My + My m,
1.74 As the thread is not tied with m, so if there were no friction between the thread and the
ball m, the tension in the thread would be zero and as a result both bodies will have free
fall motion. Obviously in the given problem it is the friction force exerted by the ball on

the thread, which becomes the tension in the thread. From the condition or language of
the problem w, >w, and as both are directed downward so, relative acceleration of

M = w,,-w, and is directed downward. Kinematical equation for the ball in the frame
of rod in projection form along upward direction gives :

I= -;-(w,‘,-w,,,):2 1)

Newton’s second law in projection form along T= fT’
vertically down direction for both, rod and ball

gives,

Mg - fr= Mw,, 2 l \ fr W
m

mg—fr=mw, €)) g/s

ll™

!
H 9
Multiplying Eq. (2) by m and Eq. (3) by M d ¥ym
and then subtracting Eq. (3) from (2) and after T g‘
Y

using Eq. (1) we get

2IMm
= a—me M&
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Suppose, the ball goes up with accleration w, and the rod comes down with the acceleration w,.

)
From Newton’s second law in projection form along vertically upward for the ball and
vertically downward for the rod respectively gives,

As the length of the thread is constant, 2w, = w,

T-mg=mw, (2)
and Mg-T'= Mw, 3
but T=2T (because pulley is massless) C)

From Egs. (1), (2), (3) and (4)
_(M-mg (2-m)g

Wl—

(in upward direction)

m + 4M n+4
and w,= 2 g']: 43 (downwards)

From kinematical equation in projection form, we get
1 2
/= 5 (w; +wy) ¢

as, w, and w, are in the opposite direction.

Putting the values of w, and w,, the sought

time becomes
t=V2Iim+4)/3(2-nm)g = 14s

Using Newton’s second law in projection form along x - axis for the body 1 and along
negative x - axis for the body 2 respectively, we get

1)
2

For the pulley lowering in downward direction
from Newton’s law along x axis,

mg-T =mw

I,-myg=myw,

T, -2T,= 0 (as pulley is mass less)

o, T,= 2T, ) A
]

As the length of the thread is constant so, h ¥
w,= 2w, mlg'

4) ¥
The simultaneous soluti f above equations yields,
m on o q y /77;;77;;;7;;7$!m;;2;g-

2(m1—2m2)g'2m_2) m,

4m,+m, n+4 (as m_2= )

W,

Obviously during the time interval in which the body 1 comes to the horizontal floor
covering the distance A, the body 2 moves upward the distance 2h. At the moment when
the body 2 is at the height 24 from the floor its velocity is given by the expression :

e 2w, ()= 2| 20=2DE ], 8hM-2)
n+4 n+4
After the body m, touches the floor the thread becomes slack or the tension in the thread
zero, thus as a result body 2 is only under gravity for it’s subsequent motion.
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1.77

1.78

Owing to the velocity v, at that moment or at the height 24 from the floor, the body 2
further goes up under gravity by the distance,

, V2 4h(n-2)
h = — =
2g n+4
Thus the sought maximum height attained by the body 2 :
: 4h(m-2) 6nh

H=2h+Hh = 2h + (n+4) n+d
Let us draw free body diagram of each body, i.e. of rod A and of wedge B and also draw
the kinemetical diagram for accelerations, after analysing the directions of motion of
A and B. Kinematical relationship of accelarations is :

Wa
tana= — M
Ws
Let us write Newton’s second law for both bodies in terms of projections having taken
positive directions of y and x axes as shown in the figure.

m,g-Ncosa=m,w, 2)
and Nsino= mgwy 3)
Simultaneous solution of (1), (2) and (3) yields :
m, gsin a g

w, = - = and
m,sino +mgcotacos o (1 +mcot’a)

- A g
"B tana " (tan o + 1 cot o)
N —_—
A Wap
— B
‘LUA —>
N YA
ly A Mag oL J
8

Note : We may also solve this problem using conservation of mechanical energy instead
of Newton’s second law.

Let us draw free body diagram of each body and fix the coordinate system, as shown in
the figure. After analysing the motion of M and m on the basis of force diagrams, let us
draw the kinematical diagram for accelerations (Fig.).

As the length of threads are constant so,
ds,g = ds), and as ;;M and 17;! do not change their directions that why

lTv’M I - IWM ' = w (say) and

woys 11 vy, and w,, 11 v,
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->
Wm
-,
Wi
so, from the triangle law of vector addition
W,= V2w €)
From the Eq. F, = mw_, for the wedge and block :
T-N= Mw, (3]
and N=mw 3)
Now, from the Eq. F, = mw, , for the block
mg-T-kN=mw C))
Simultaneous solution of Eqgs. (2), (3) and (4) yields :
N mg g
w

T (km+2m+ M) (k+2+M/m)
Hence using Eq. (1)
w, = gV2
" Q+k+M/m)
Bodies 1 and 2 will remain at rest with repect to bar A for w,;, sw <w_,_, where w__is

the sought minimum acceleration of the bar. Beyond these limits there will be a relative
motion between bar and the bodies. For 0 s w < w_, , the tendency of body 1 in relation

to the bar A is to move towards right and is in the opposite sense for w 2 Woaxe On the

basis of above argument the static friction on 2 by A is directed upward and on 1 by A
is directed towards left for the purpose of calculating w,_ .

Let us write Newton’s second law for bodies 1 and 2 in terms of projection along positive

J}-;rx:i(l;:g&) of, fry= T-mw (1) AN — W

Ny= mw (3] T
As body 2 has no acceleration in vertical f i«
direction, so \-

fro=mg-T () mg -
From (1) and (3)

(fri+fr) = m(g-w) (4) fPA—--’Nz

But  fr,+fr,sk(N,+N,) 2 mg
or fr,+fr,<k(mg+mw) )

LI 17777 (77777

~
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1.80

1.81

From (4) and (5)
m(g—w)sr::k(g+w), or wz g1-k

(1+k)
- g(1-k)
Hence Woin 1+ k)

On the basis of the initial argument of the solution of 1.79, the tendency of bar 2 with
respect to 1 will be to move up along the plane.

Let us fix (x - y) coordinate system in the frame of ground as shown in the figure.
From second law of motion in projection form along y and x axes :

mgcosa-N= mwsina

or, N=m(gcosa-wsina) ¢y
mgsina + fr= mwcos a
of, fr=m(wcosa-gsina) )

but fr < kN, so from (1) and (2)
(wcosa-gsina)sk(gcosa+wsina)
or, w(cosa-ksina)sg(kcosa+sina)

(cosa +sina)
or, ws - ,
cosa - ksina

So, the sought maximum acceleration of the
wedge :
(kcosa+sina)g (kcota+1l)g

where cota> k

wmaxa " -
cos a - ksin a cota -k

Let us draw the force diagram of each body, and on this basis we observe that the prism

moves towards right say with an acceleration w1 and the bar 2 of mass m, moves down
—_—

the plane with respect to 1, say with acceleration w,,1 , then, w2 = w,, +w, (Fig.)

Let us write Newton’s second law for both bodies in projection form along positive
y, and x; axes as shown in the Fig.

mygcos o -N=mywy(, = m2[w21(y2)+w102)]= m2[0+w1 sina]

or, m, g cos o — N = m, w, sin o (1)
and " Nsina = mw, 2)
Solving (1) and (2), we get

W, = ngsinacosa- g sin a cos a.

my+mysin‘o  (m/m,)+sin’a

W,
2] >
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1.82 To analyse the kinematic relations between the bodies, sketch the force diagram of each

1.83

body as shown in the figure.

On the basis of force diagram, it is obvious that the wedge M will move towards right
and the block will move down along the wedge. As the length of the thread is constant,
the distance travelled by the block on the wedge must be equal to the distance travelled
by the wedge on the floor. Hence ds,, M dsM. As 5,’"” and 17;{ do not change their
directions and acceleration that’s why o 11 vm and wM 1R} vM and W, =w, =w

(say) and accordingly the diagram of kinematical dependence is shown in figure.

N % T
T >
me >
/\\é’ ‘ —> X1 Wm
X v M o£
mg

1777777777 777777 l_;

. M

—p
As w = w mpm + Wy, 50 from triangle law of vector addition.

wm=\/wM+w:M—2me wycosa = wVY2(1 -cos a) 1)
From F,= mw,, (for the wedge),

T=Tcosa+Nsina= Mw 2

For the bar m let us fix (x -y ) coordinate system in the frame of ground Newton’s law
in projection form along x and y axes (Fig.) gives

mgsina - T=mw,, =m [me ot Wi (x)}
=m [me + w, cos (T - a)] =mw (1 - cosa) 3)

mgcosa-N=mw, .,

-m[w M(y)+wM(y)]=m[0+wsma] 4)
Solving the above Egs. simultaneously, we get

m g sin o
M+2m(1-cosa)

Note : We can study the motion of the block m in the frame of wedge also, alternately
we may solve this problem using conservation of mechanical energy.

W=

Let us sketch the diagram for the motion of the particle of mass m along the circle of
radius R and indicate x and y axis, as shown m the ﬁgure

(a) For the particle, change in momentum A p = my (- z) mv(j )

SO, |Ap|=\/—mv

and time taken in describing quarter of the circle,
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TR
At= 2y
- —> 2 A
Hence, <F> = |Ap|= \/:’Z-mv- 22 my - y
At nR/2v nR \)f —
(b) In this case Ve
—> —» -
p,-=0andpf-mw,t(-t), R ‘
$0 |A;|=mw,t 0 &

—>

Hence, |<F>| = JAtRl-— mw

t

While moving in a loop, normal reaction exerted by the flyer on the loop at different

points and uncompensated weight if any contribute to the weight of flyer at those points.

(a) When the aircraft is at the lowermost point, Newton’s second law of motion in projection
form F,= mw, gives

2

mv
N-mg= R
mv?
or, N=mg+ =2-09 kN

R

(b) When it is at the upper most point, again
from F,= mw, we get

: m”
N'+mg R
" m V2
N'= R "Mm8&= 0-7kN
(c) When the aircraft is at the middle point of the loop, again from F,= mw,
2
,  my )
N R 1-4kN

The uncompensated weight is mg. Thus effective weight = VNZ + m* g2 =156 kN acts
obliquely.

Let us depict the forces acting on the small sphere m, (at an arbitrary position when the
thread makes an angle 0 from the vertical) and write equation F = mw via projection on
the unit vectors Q, and z’;n. From F,= mw,, we have |

m sin9-mé’—
J dt

o ml’i’.‘i_ m vdy
ds 1(-do)

(as vertical is refrence line of angular position)



or vdv= -glsin0d0
Integrating both the sides :

v (:]
dv= -gl| sin0do
{vv gé;sm

2

\ %
or, 2-glcos0

y2
Hence 7= 2gcos 0=

W, (1)

(Eq. (1) can be easily obtained by the
conservation of mechanical energy).

From Fn =mw,

mv2

l

T-mgcosO=

Using (1) we have
T=3mgcos0 2

Again from the Eq. F,= mw,:

mgsin@=mw, or w,= gsin0 (3)

Hence w = \/w‘2+wn2 = \/(gsinf))2+(2gcos9)2 (using 1 and 3)

=gV1+3cos?0

(b) Vertical component of velocity, v, = v sin 8

So, vy2= v2sin20 = 2glcos 8 sin20 (using 1)
.2
For maximum v, or vy2 , d(cosjesm 6) =0
hich yield cos 0 L
which yields 7

Therefore from (2) T= 3mg —= \/— = V3 mg

(c) We have W= w, u +w, u thus wy = w,, +w,.

But in accordance with the problem w, = 0

y
So, Wig) * Wagy = O
or, gsin 0 sin 0 + 2g cos 2 0 (- cos 0) = 0
or, cos 0 = L or, 0= 547°

V3
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1.87

The ball has only normal acceleration at the lowest position and only tangential acceleration
at any of the extreme position. Let v be the speed of the ball at its lowest position and /
be the length of the thread, then according to the problem

2

Zl—- g sin o 1) ’
4L

where a is the maximum deflection angle

From Newton’s law in projection form : F,= mw,

-mgsin 0 = my dv_
&=t 1d0 i \
\\
or, -glsin®d06 = vadv : \b)
On integrating both the sides within their limits. i /-’ﬁ'
a 0 \4 ’3,---" t
—glfsinedesfvdv A% mg.
0 1%
or, V= 2gl (1 -cos a) (2)

Note : Eq. (2) can easily be obtained by the conservation of mechanical energy of the
ball in the uniform field of gravity.
From Egs. (1) and (2) with 6 = a

2gl (1 - cos o) = Ig cos a

or, Cos O = %— so, a = 53°

Let us depict the forces acting on the body A (which are the force of gravity mgand the
normal reaction N ) and write equation F = mw via projection on the unit vectors

u, and u, (Fig.)
From F,= mw,

mg sin 0 = méj’_

dt
- m vdv m vdy
ds Rd6
or, gRsin0d0=vdy
Integrating both side for obtaining v (0)
0 . v N
[ srsinoao= [vav
: o 2
or, wv?= 2 gR (1 - cos 0) A Y
From F,= mw, uh
2
mgcos 0 - N = m—v—/ mg. )

At the moment the body loses contact with the surface, N = 0 and therefore the Eq. (2)
becomes

¥ = gR cos 0 3
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where vand 0 correspond to the moment when the body loses contact with the surface.
Solving Egs. (1) and (3) we obtain cos 0 = -_3’- or, 6= cos 1 (2/73) and v= vV 2gR/3.

At first draw the free body diagram of the device as, shown. The forces, acting on the
sleeve are it’s weight, acting vertically downward, spring force, along the length of the
spring and normal reaction by the rod, perpendicular to its length.

Let F be the spring force, and Al be the elongation.
From, F, = mw, :
Nsin0+Fcos0=ma?r 1)
where rcos 0= (I, + Al).
Similarly from F,= mw,
Ncos@-Fsin®=0 or, N=Fsin0/cos6 (2)
From (1) and (2)

F(sin0/cos0)-sin®+FcosO=mwr

_ 2

= mw” ([, + Al)/cos 0 &)w
On putting F= x A, r
KAlsin’0+kAlcos’0= maw?(ly+Al) 0 F
on solving, we get, N /

l //

Al= mo? —>— = -

K-mw" (x/mo’-1) mg

and it is independent of the direction of rotation.

According to the question, the cyclist moves along the circular path and the centripetal
force is provided by the frictional force. Thus from the equation F = mw,

fr= %— or kmg= my

r
r V2 2
or k‘)(l-_ﬁ)g=—r— or V= ky(r-r*/R)g 1)
2
y
‘%)
For v_,., we should have = 0
dr
2r
or, 1-—=0, sor=R/2
R
Hence v, = %-V ko gR
As initial velocity is zero thus
V=2 w,s )

As w, >0 the speed of the car increases with time or distance. Till the moment, sliding
starts, the static friction provides the required centripetal acceleration to the car.

Thus fr=mw, but frs< kmg
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2
So, ws K g* or w,2+-vR;-s g
or, Vs (l?gz-wf)R
Hence Vyax ™ \[(k2 g2 - wtz)R

2
. Vmax 1 1 / kg z
so, from Eqn. (1), the sought distance s o w, "2 (w J -1 = 60m.

¢

Since the car follows a curve, so the maximum velocity at which it can ride without sliding
at the point of minimum radius of curvature is the sought velocity and obviously in this
case the static friction between the car and the road is limiting.

Hence from the equation F, = mw
2
kmg = QRL or vs VkRg
VKR, 8 . 1)

We know that, radius of curvature for a curve at any point (x, y) is given as,

[1 + (dy/dx)* 2
(y) ] &

SO Voax =

R=

)

For the given curve,

Substituting this value in (2) we get,
[1+ (@%/02) cos? (x/ 1) ]3/2

(a/ a2) sin (x/ )

. . X =xn
For the minimum R, — = —
a

2

and therefore, corresponding radius of curvature
2

R--,-%— 3)

Hence from (1) and (2)

Vo= aVEkg/a
The sought tensile stress acts on each element of the chain. Hence divide the chain into
small, similar elements so that each element may be assumed as a particle. We consider
one such element of mass dm, which subtends angle d o at the centre. The chain moves
along a circle of known radius R with a known angular speed @ and certain forces act on
it. We have to find one of these forces.

From Newton’s second law in projection form, F, = mw, we get
2 T'sin (do./2) - dN cos 0 = dm o’ R
and from F, = mw, we get
dN sin@ = gdm
Then putting dm = mda/2 n and sin (da/2) = do/2 and solving, we get,

_m (mzR + g cot 0)

T 2xn
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1.93 Let, us consider a small element of the thread and draw free body diagram for this elemens.
(a) Applying Newton’s second law of motion in projection form, F, = mw, for this element,

(T+dT)sin(d0/2) + Tsin(d0/2)-dN= dnw’R= 0

or, 2T'sin (d 0/2) = d N, [negelecting the term(dT sind 0/2) ]
or, TdO=dN, as sin-d—e-g-e— 1)
2 2
Also, dfr= kdN= (T+dl)-T=dT T (A
From Egs. (1) and (2), Cl f P
kTdo=dT or LLw ko dn
In this case @ == so, 9
I 3 d T+dT
or, or, nTl- n 3)
1 T, 1
SO, k=;1n 7,:— ;EIIIT]O T,. 7-2

I, mg m ’
as —_— — R —= m, m
I, mg m Mo z

m
(b) When ;3- 7, Which is greater than 7, the blocks will move with same value of
1

acceleration. (say w) and clearly m, moves downward. From Newton’s second law in
projection form (downward for m, and upward for m,) we get :

myg-Ty=myw )
and T)-m g=mw S)
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1.95

1.96

1.97

Al 72
50 7, Mo (6)
Simultaneous solution of Egs. (4), (5) and (6) yields :

(my-memy)g M-my) ( m, )
w= =

(my+mgmy)  mmg) S [V my T "
The force with which the cylinder wall acts
on the particle will provide centripetal force
necessary for the motion of the particle, and
since there is no acceleration acting in the
horizontal direction, horizontal component of
the velocity will remain constant througout

the motion.

So V.= V,COSs O

Using, F,= mw,, for the particle of mass m,

(i@

mv:  mv?cos’a
x 0
N="%-" R
which is the required normal force.
Obviously the radius vector describing the position of the particle relative to the origin of

coordinate is

— "

r=xi+yj=asinwti+bcoswtj

Differentiating twice with respect the time :

d*r’ L =2
W= ——7=-m2(asmmtl+bcosu)t])=—032? (1)
dt
—> —>
Thus F=mw=-mo®r

(a) We have Ap_’-fl_;"dt

t

- [mga= mg )
0 —>—>
. . ) ) 2( Vo'8 )
(b) Using the solution of problem 1.28 (b), the total time of motion, T= - ——g—z—
Hence using t=tin (1)
|apT =mg

- — —»,
= -2m(vyg)/g (vy' g is —ve)
From the equation of the given time dependence force F —at (t-1) at t =1, the force
vanishes,

(a) Thus A;;E:f;;dt
0



or,

but

(b) Again from the equation Fem
a_;(t t) mé—‘z’
dt

or, E'(tt—tz)dt= mdv"
Integrating within the limits for vz ),

—
w

or,

Thus
m

198 We have F = Fsin wt
F,sinwt or mdv= Fsin wtdt

or m——=
dt
On integrating,
—
> -—F 0 .
myv = — cos wt + C, (where C is integration constant)
——p
Fy
When t=0, v=0, so C= —
mw
— -
- Fy Fy

—
Hence, v= ——cos ot + ——
ma® mo

As |coswt < 1 so, v= —2 (1 -cos wt)
m®

656
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Thus s=fvdt
0

F,t Fysinwt F, .
- - = 5 ( @t - sin ot )
m o mw m

(Figure in the answer sheet). N

P -
1.99 According to the problem, the force acting on the particle of mass m is, F = F cos wt
- —>
dv
So, m——= F,cos wt or dv'= =2 cos wt dt
m

dt
Integrating, within the limits.

v - ! —>
F —- F
0 o .
fd\7'= — | cosmwtdt or v= —sin wt
m mw
0 0

It is clear from equation (1), that after starting at = 0, the particle comes to rest fro

. T
the first time at t= —.

®
From Eq. (1 M= 2 gin oo for 15 2
rom Eq. (1), v= |v|= — ;sinot for r< = 2
Thus during the time interval ¢ = n/w, the sought distance
F o
S= — sin wt dt = 2F2
mw mao
0
From Eq. (1)
Fy . 1
Vmax = oo 35 | sinowr | <
1.100 (a) From the problem F=-rv so m_r= -
dv — -
Thus m== -rv[asdvitlv]
or, L—iY-- -La
v m
On integrating Inv=- -:;;-t+ C
But at t=0, v=y, 50, C=Iny,
mY=_-L = -t
or, nvo-—mt or, v=v,€ m
Thus for t—>o v=10

dv -r
®) Wehavcmdt- -rv sodv= mds
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Integrating within the given limits to obtain v ( s ):

\4 s
r rs
or, fdv--mfds or v=vo-— 1)
Ve 0
myv,
Thus for Vm 0,s-sw--—r—
(c) Let we have mdy -rv or dv_ L
v v m
ve'M ¢
- v
or, -d—Y--—L dt, or, In ..
v m nvO m
0 0
So ‘e -mln(l/'n)=mlnn

r r
Now, average velocity over this time interval,

0 v(n-1)
<v>m=
fa LT nin
According to the problem
dv 2 dv
mI= -kv or,m;—z--kdt

Integrating, withing the limits,

1 4

t
dv k m(vo-Vv)
v2=_mfdt oL =% Vo v 1)
0
Yo
To fin. the value of k, rewrite
mvﬂn—kv2 or, -d—v==-£ds
ds v m
On integrating
v h
@ __kf
v m
Y 0
m. VYo
So, k= h In ” (2)
Putting the value of k from (2) in (1), we get
= ——

v vln-‘-’-q
0 v
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From Newton’s second law for the bar in projection from, F, = m w, along x direction
we get
mg sin o — kmg cos o = mw
dv .

or, Vo = gsina-axgcosa, (as k = ax),
or, vdv = (gsina -axgcos a)dx

\ 4 x
or, fvdv-gf(sina—xcosa)dx

0 0

2 2
So Y—-=g(sinax-£—acosa) ¢
2 2 N fr

From (1) v = 0 at either
x=0, or x= %tana

0%
As the motion of the bar is unidirectional it mé’-
stops after going through a distance of &

2
—tan Q.
a

From (1), for v

max?

2

d , . x . ‘ 1
E(smax- ) acos o) = 0, which yields x = atana

Hence, the maximum velocity will be at the distance, x = tan a/a
Putting this value of x in (1) the maximum velocity,

Vgsinatana
V. =

max a

Since, the applied force is proportional to the time and the frictional force also exists, the
motion does not start just after applying the force. The body starts its motion when F
equals the limiting friction.

Let the motion start after time ¢z, , then
km
F = aty=kmg or, t,= __;g

So, for t = = f,, the body remains at rest and for £ > ¢, obviously

mdv
o = ¢ (t-ty) or, mdv=a(t-tyadt
Integrating, and noting v = Qat ¢ = ¢,, we have for£> ¢,
v 4
fmdv— af(t t,)dt or v= —‘—I—(t t,)?
0 2m 0
0 '

0
4

_ _ Vi Lt
Thus S—fva't— 2mf(t 1) dt 6m(t ty)
4

0
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1.104 While going upward, from Newton’s second law in vertical direction :

1.105

m yav -(mg+kv?) or —M—z—
Lol
[+%)

ds
At the maximum height A, the speed v = 0, so
0 k

{g+(‘;cvd;/m)' -[ds

Integrating and solving, we get,

m kv,
h= >k ln( mg ] 1)
When the body falls downward, the net force acting on the body in downward direction
equals (mg - kv? )
Hence net acceleration, in downward direction, according to second law of motion
vdy kv? of vdy

- —ds

7= ds

8-7;'

Thus f Vd; fds
g-kv/m

Integrating and putting the value of 4 from (1), we get,

vi= vo/ Vi+kv? 0/ mg.

Let us fix x — y co-ordinate system to the given plane, taking x-axis in the direction along
which the force vector was oriented at the moment ¢ =0, then the fundamental equation
of dynamics expressed via the projection on x and y-axes gives,

F v, 1
coswt=m— 1)
dv
and Fsinwt= m—Z% #3)

dt
) . - . F_ .
(a) Using the coadition W0) = 0, we obtain v = e Sne t 3)
and
v=~1?——(1—cosmt) 4

Y mow

T (o)

y mo 2
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(b) It is seen from this that the velocity v

turns into zero after the time interval A¢,
which can be found from the relation, Ay /
At /
o —= n. Consequentely, /
2 / F
the sought distance, is 2
& N Q=wt
/
s = f vdt = 8F2 /‘
mo e
0 ~
Jvar Qle="" — X

Average velocity, <v> =
fat
2w

2F |, (ot 4F
So, <v> =fmm sm( 2 )dt/ (2nw) =
0

nmao

The acceleration of the disc along the plane is determined by the projection of the force
of gravity on this plane F, = mgsin o and the friction force fr = kmg cos o. In our case

k= tan o and therefore
fr=F, =mgsina

Let us find the projection of the acceleration
on the derection of the tangent to the trajectory
and on the x-axis :

mw,=F _cosp-fr=mgsina(cosp-1)

mw, = F - frcos@= mgsino (1-cosq)
It is seen fromthis that w, = — w_, which means
that the velocity v and its projection v, differ

only by a constant value C which does not
change with time, i.e.

v=v +C,

where v, = v cos . The constant C is found from the initial condition v= v, whence

> initially. Finally we obtain

C =y, since ¢ =

v= vo/(l +Cos Q).
In the cource of time ¢ =+ 0 and v — v/2. (Motion then is unaccelerated.)

Let us consider an element of length ds at an angle ¢ from the vertical diameter. As the
speed of this element is zero at initial instant of time, it’s centripetal acceleration is zero,
and hence, dN - Ads cos p= 0, where A is the linear mass density of the chain Let
T and T+dT be the tension at the upper and the lower ends of ds. we have from,
F,=mw,

(T+dT)+Adsgsing-T= Msw,

dT+ A\Rdpgsingp= Adsw,

or,
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If we sum the above equation for all elements,
the term f dT = 0 because there is no tension

at the free ends, so
I/R

)\.ngsinq)d(p= M, [ ds=Nlw,
0

Hence W, = g-lli(l-cosé)

As w, = a at initial moment

So, w=|w,|=5£(1—cos—l-)

l R

In the problem, we require the velocity of the body, realtive to the sphere, which itself
moves with an acceleration w, in horizontal direction (say towards left). Hence it is advisible

to solve the problem in the frame of sphere (non-inertial frame).

At an arbitary moment, when the body is at an angle 0 with the vertical, we sketch the
force diagram for the body and write the second law of motion in projection form
F = mw

n n

2
or, mgcosG—N—mwosin9=-”—lL 1)

R
At the break off point, N= 0, 6= 0, and let
v= vyso the Eq. (1) becomes,

2
-‘;—g—- g cos 0, — w, sin 6, 2
From, F, = mw,
mgsinO—mwooos9=dev- m v dv
ds Rd6
or, vdv= R(gsin0+w,cos0)d0
Yo 8

Integrating, f vdv = f R (g sinB + w; cosB) d 6
0 0
2
Yo .
R g(1 - cosB;) + w, sin G, 3)

Note that the Eq. (3) can also be obtained by the work-energy theorem A = AT (in the
frame of sphere)

therefore, mgR (1 -cos 8;) + mw, R sin 0, = -;-mvo2

[here mw, R sin 6 is the work done by the pseudoforce (- mv_v:)]
Vo .

or, == g(1-cosB;)+w,sin @,

2R
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1.110

Solving Egs. (2) and (3) we get,

2+kV S +9k2

3(1+42)

W,
vy = V2gR/3 and 60=cos"1[ ], where & = EQ

Hence 80 | g= 17°

This is not central force problem unless the path is a circle about the said point. Rather
bere F, (tangential force) vanishes. Thus equation of motion becomes,

V,= V= constant

2
mvy, A
and, —= — forr=7r,
r r
We can consider the latter equation as the equilibrium under two forces. When the motion

is perturbed, we write r = ry +x and the net force acting on the particle is,

2 2 2
my, - my my,
4 70 A(I—Ex—)+ 0(1—3—)-- 2°(1—n)x

(r0+x)" Iptx ,-(;‘ To o rs
my2
This is opposite to the displacement x, if n<1- (—;9- is an outward directed centrifugul

force while l‘ni is thé inward directed external force).
r

There are two forces on the sleeve, the weight F, and the centrifugal force F,. We resolve

both forces into tangential and normal component then the net downward tangential force

on the sleeve is,
2
cos O

mg sin® (1 _e
This vanishes for 6= 0 and for 0

0= 6y= cos ™ (—§—) which is real if
o R

2

Mw2RSin@Cos 8
w2R>g. Ifm2R<g, then 1 - — R

Y

cos O

>MWw:RSin®=Fz2

is always positive for small values of 6 and
hence the net tangential force near 6= 0 ('
opposes any displacement away from it. °
0 = 0 is then stable.

o’ R

mgSmO mg:f-; 7773CoSGf-?na)sz‘iﬂ2

Ifw’R >g, 1-

cos0 is negative for small

O near 8= 0 and 0 = O is then unstable.
However 0 = 0, is stable because the force tends to bring the sleeve near the equilibrium

position 0 = 0.

If ®*R = g, the two positions coincide and becomes a stable equilibrium point.
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Define the axes as shown with z along the local vertical, x due east and y due north. (We
assume we are in the northern hemisphere). Then the Coriolis force has the components.

I’:.,,= —2m@x V)

rag - - ie
= 2mm[vycose—vzsinB)z—vxcos91+vxcos9k = 2mo (v, cosO - v, sinB) i
since v, is small when the direction in which the gun is fired is due north. Thus the

equation of motion (neglecting centrifugal forces) are

X = 2mo (v, sing - v, cosp),y = 0 and 2’ = - g w {r Y-No rth
Integrating we get y = v (constant), z= — gt z_verucdl
and x = 20 vsing £ + mg t2 cosp R.East

Finally,

2 . 1 3
x= vt sing + 3 wgt” cosp

Now v >> gt in the present case. so,

2
. s . S2
X = OV SIng (’;) = @Osme —
1%

~ 7 cm (to the east).

The disc exerts three forces which are mutually perpendicular. They are the reaction of
the weight, mg, vertically upward, the Coriolis force 2mv’ w perpendicular to the plane of

the vertical and along the diameter, and mow’r outward along the diameter. The resultant
force is,

F= m\/g2+m4r2+(2v' w)?

The sleeve is free to slide along the rod AB. Thus only the centrifugal force acts on it.
The equation is,

. 2 r
mv= mw°r where v= —-

dt
. dv_d(1,
Butv=vdr dr(ZV)
so, %—v2= -;-mzr2+constant
or, T S

Vo being the initial velocity when r = 0. The Coriolis force is then,

2mm‘\/v§+m2r2 = 2mw’rvi +v§/032r2

= 2:83 N on putting the values.
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The disc OBAC is rotating with angular
velocity w about the axis OO’ passing through

the edge point O. The equation of motion in Y

rotating frame is,

— —> — e
mw = F+mw’R +2mv" x o= F+F,
-
where F,, is the resultant inertial forc. (psendo

force) which is the vector sum of centrifugal 0
and Coriolis forces.

(a) AtA,F, vanishes. Thus 0 = —2mw’R n+2mv' @ n

A

C

A
where n is the inward drawn unit vector to the centre from the point in question, here A.

Thus, v = wR
2 12
so, we —u u o?R.
—> P R —>
2 S 2
(b) AtB F,, = mo“OC +mw”BC

its magnitude is mw? Var? - r:, where r = OB.
The equation of motion in the rotating coordinate system is,
—> —>
mw = F+mo?R+2m (v x o)

Now, - ¥"= ROeg+Rsind e,

and V-W'cosec?:—w'sine'e';
—> —> —>
{ - e, € €
-Z_EF“”- 0 RO Rsinfg
wcos B -wsin0 0

= &, (@R sin’0 §) + wR sin 6 cos 8 ¢ e, — wR 6 cos O &,
Now on the sphere,
v= (-R6*-Rsin0¢?)e,
+(R® ~RsinBcos0g?) ey
+(Rsin 69" + 2R cos 6 0 ¢) e,
Thus the equation of motion are,

m (- R 6% - Rsin?0 @) = N - mg cos 0 + mw> R sin> 0 + 2mw R sin’ 6 ¢

m (RO - R sin 6 cos 8 ¢>) = mg sin 6 + mw? R sin 6 cos 6 + 2m R sin 6 cos 6 ¢

m(Rsin0@ +2Rcos00 @)= —2mmnR0Ocos B
From the third equation, we get, p= -~ ®

A result that is easy to understant by considering the motion in non-rotating frame. The

eliminating ¢ we get,
mR 67 = mgcos 0 -N
mRO = mgsin0
Integrating the last equation,

%mRézs mg (1 - cos 0)
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Hence N= (3-2cos 8) mg
So the body must fly off for 8 = 0;= cos ™ ! %, exactly as if the sphere were nonrotating.

Now, at this point F .= centrifugal force = mw® R sin 0y = V % mw’ R

= V 0?R?0% cos? 0 + (0> R)? sin® 0 x 2m
2 2. 4 2¢ 22 2 8
'\/ (w R) +wa9x3R x2m 3mmR 5+3w2R

(a) When the train is moving along a meridian only the Coriolis force has a lateral
component and its magnitude (see the previous problem) is,

2Zmowvcos 0= 2m wsin A

(Here we have put RO — v)

3 2x 54000 _\/z
So, Fippou = 2% 2000 x 10 x86400x 3600 X >

= 3-77kN, (we write A for the latitude)

(b) The resultant of the inertial forces acting
on the train is,

\

- —
F,= -2moR0OcosBe,
+ (mw?> R sin 6 cos 6 + 2m o Rsin 0 cos 6 ¢ ) e

+(mw?Rsin’0+2moRsin’0¢)e,

This vanishes if 6= 0, p= - %m

— 1 . 1
Thus V=V, e,, V,= --é-szmO-—-incosk

(We write A for the latitude here)

Thus the train must move from the east to west along the 60" parallel with a speed,

1 1,2% 1oms .
Zu)Rcos}\. 4><864x10 x 6-37 x 10® = 115-8 m/s ~ 417 km/hr

We go to the equation given in 1.111. Here v, = 0 so we can take y = 0, thus we get for

the motion in the x z plane. )
x = -2wv,cos 0

and Z=-g
. |
Integrating, Z= - —Z—gt

x= g cos ot
3/2

1 1 2h
So xsé—mgcoscpt -gmgcosq)

th 1/
= CcoSs

There is thus a displacement to the east of

2 2n WA
3x864x500x1x 98 26 cm.
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1.3

1.118

1.119

1.120

1.121

Laws of Conservation of Energy, Momentum and Angular Momentum.

—p
As F is constant so the sought work done
-y
A= FA=F-(p-7)

- - e P — - -  —»
or, A= 3i+4j ) [(Ri-3j)-(+2j)]=(Bi+4j)-(i-5j)=177
Differentating v (s) with respect to time
v _ _a_ds Nry 23
e LAl el

(As locomotive is in unidrectional motion)

2
ma
Hence force acting on the locomotive F=mw = ——

2
Let, atr v= 0at ¢t = 0 then the distance covered during the first ¢ seconds

1 2_1a22 a22

4,2
Hence the sought work, A = Fs = ma’ (a ) mat
2 4 8
We have
2
T= %mvz- as’ or, V= 2:: )
Differentating Eq. (1) with respect to time
2w = S8y o, = 2 ®

Hence net acceleration of the particle

= wa-t-w: = ‘\/(2-”-‘:3)2+(2asz)2 = 2—"‘—:;-\/ 1+(s/R)2

mR

Hence the sought force, F = mw = 2asV1 + (s/R)2

—p
Let F makes an angle 6 with the horizontal at any instant of time (Fig.). Newton’s second
law in projection form along the direction of the force, gives :

F = lkang cos 0 + mg sin O (because there is no
acceleration of the body.)

gl — . . g
As F 11 drthe differential work done by the force F,
dA=F-dr= Fds, (where ds = | d7”|) N

= kmg ds (cos 6) + mg ds sin ©

= kmg dx dy. >
8 . +mg ay \ x
Hence, A = kmg dx+mgfdy
= kmgl+mgh= mg(kl+h). L \:Cil
< Z —> -
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1122 Let s be the distance covered by the disc along the incline, from the Eq. of increment of
M.E. of the disc in the field of gravity : AT+ AU = A,
0+ (-mgssina)= - kmgcos as - kmgl
kl
on $= Sina-kcos o 1)
Hence the sought work

Ag = —kmgscosa+!]

_ __kimg .
Ag ]~ kool o [Using the Eqn. (1)]

On puting the values Ag = ~0.05J

1123 Let x be the compression in the spring when the bar m, is about to shift. Therefore at this
moment spring force on m, is equal to the limiting friction between the bar m, and horizontal

floor. Hence
kx= km,g [where x is the spring constant (say)] 1)

For the block m; from work-energy theorem : A= AT = O for minimum force. (A here

indudes the work done in stretching the spring.)

so, Fx—%xxz—kmgx-() or K';'t

From (1) and (2),

F-km g 2,

Fe= kg|m, +22
1.124 From the initial condition of the problem the limiting fricition between the chain lying on

the horizontal table equals the weight of the over hanging part of the chain, i.e.

Anlg= kA (1-m)lg(where A is the linear N
mass density of the chain)

So, k = 1—11-5 1)
Let (at an arbitrary moment of time) the length f F X l

‘of the chain on the table is x. So the net friction
force between the chain and the table, at this AX
moment : 8‘

f,= kN=kAxg )

The differential work done by the friction forces :

dAaf:-d?’-—f,ds~--k}»xg(—dx)-)\g(—-?ﬁ)xdx (3)

A(X) 3

OONUONONNNNNNN

(Note that here we have written ds = - dx., because ds is essentially a positive term and
as the length of the chain decreases with time, dx is negative)

Hence, the sought work done
0

A-f xgl—?;xdx- -(1-7) nngl, -13]
1-n)i
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1.125

1.126

1.127

The velocity of the body, ¢ seconds after the begining of the motion becomes
V= 70' + g't. Tht power developed by the gravity (m g) at that moment, is

P=mg"v=m(g" vy+gt)= mg(gt-v,sin o) 1)
As mg” is a constant force, so the average power
oo A mEAT

T T
where A7 is the net displacement of the body during time of flight.
As, mgLAr” so <P>= 0
2
We have w, = VE- at2, or, v=VaRt

t is defined to start from the begining of motion from rest.

So, W, = %=\/a7q-

—
Instantaneous power, P=F - v'= m (w, ﬁ,+ w, lAl, )-(VaR tﬁ, )
A
(where &, and u, are unit vectors along the direction of tangent (velocity) and normal

respectively)
So, P= mw,VaR t = ma Rt

Hence the sought average power
t t

det fmatht
0

<P>= "' -
t
fd,
0
2
Hence <P> = maRt - ma Rt
2t 2

Let the body m acquire the horizontal velocity v, along positive x — axis at the point O.
(a) Velocity of the body ¢ seconds after the begining of the motion,

- —p —» >

ve vo+wit= (vo—kgt)t 1)
Instantaneous power P = F-v= (—kmg?)-(vo-kgt) = - kmg (vy - kgt )
From Eq. (1), the time of motion t = vy/kg

Hence sought average power during the time of motion
T

f - kmg (v - kgt ) dt
0 kmg vq -
<P> = - =5 =" 2 W (On substitution)

From F = mw,

dv,
Ve an
or, v,dv,= —kgdx = - agxdx

—-kmg=mw,=m
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To find v (x), let us integrate the above equation
\ 4 x

fvxdvx- - agfxdx o, V= v} -agd @)

Yy 0
—p
Now, P=F-v= -maxgVvi-agx® ()
For maximum power 1 (V v2 x2 -A x4) = () which yields x = i)
POWED g\ "V 0¥ — 18 Y VZag

Putting this value of x, in Eq. (2) we get,

P .= —lmv%w/ag

max 2

Centrifugal force of inertia is directed outward along radial line, thus the sought work

n

A= f mw? r dr = %mm2 (r% -ri}= 020T (On substitution)

ry
Since the springs are connected in series, the combination may be treated as a single spring
of spring constant.
K1%2
K, +X,
From the equation of increment of M.E., AT+AU=A_,

K=

0+lcarr= 4, o A= -1-( I PE

2 21 kK, +K, }

First, let us find the total height of ascent. At the beginning and the end of the path of
velocity of the body is equal to zero, and therefore the increment of the kinetic energy of
the body is also equal to zero. On the other hand, in according with work-energy theorem
AT is equal to the algebraic sum of the works A performed by all the forces, i.e. by the
force F and gravity, over this path. However, since AT= 0 then A = 0. Taking into
account that the upward direction is assumed to coincide with the positive direction of the
y - axis, we can write

h k
= ——ip
A=f(F+m§T-d r=f(Fy—mg)dy
0 0
h

= mgf(1—2ay)dy- mgh(1 -ah)= 0.
0

whence h= 1/a.
The work performed by the force F over the first half of the ascent is
h/2 h/2

AF-nydys 2mgf(1-ay)dy= 3 mg/4a.
0 0

The corresponding increment of the potential energy is
AU = mgh/2= mg/2a.
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1.131

1132

From the equation F, = - %lr]— we get F, = [ - -f—': + _r%]

(a) we have at r = r;, the particle is in equilibrium position. i.e. F,= 0 so, 7y = gb‘;

To check, whether the position is steady (the position of stable equilibrium), we have to
satisfy

‘i;g >0
d*U [6a 2b
We have 2 - [;7—-'.—3]
Putting the value of r = r;= _2b£l_, we get
%—zr-g= ;3% , (as a and b are positive constant)
So, %j—gj- = g% >0,

which indicates that the potential energy of the system is minimum, hence this position
is steady. ’

du 2a b
(b) We have F,-—dr- —r3+r2
dFr
For F, to be maximum, ——=0
dr
3a -b
So, r= B and then Fr(m) = E-i’
As F, is negative, the force is attractive.
(a) We have
oU -9U
F = - - -2axand F = dy =-2f8y
So, F= 2axi—:25yi—’and, F= 2\/a2x2+52y2 1)

—_
For a central force, rx F= 0

— —p - - -—> -
Here, rxF=(xi+yj )x(-2axi-2Byj)

—> —
= -2Bxyk-2axy(k )= O

Hence the force is not a central force.
(b) As U= ax’+PBy

sU - oU
So, F, = P -2ax and F = - -28y.
So, Fa= \/}3‘3+Fy2=\/4a2x2+432y2

According to the problem
F=2Va®x?+ ﬂz y2 = C (constant)
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c?
or, P+ iy = >

2 2

IH

2
2t i;- Yo k (say) @)

Therefore the surfaces for which F is constant is an ellipse.
For an equipotential surface U is constant.

So, ax’+Py’= C, (constant)

or,

[ 8]

2 . ¥ - Co
Hence the equipotential surface is also an ellipse.

Let us calculate the work performed by the forces of each field over the path from a
certain point 1 (x,, y;) to another certain point 2 (x,, y,)

x
() dA= F-dr=ayi-dr= aydc or, A= afydx-

or, = K, (constant)

%

(ii) dA= F-di= (axi+byi)-dr= axdx + bydy
* Y2

Hence A= f a xdx +f bydy
* 41

In the first case, the integral depends on the function of type y (x), i.e. on the shape of
the path. Consequently, the first field of force is not potential. In the second case, both
the integrals do not depend on the shape of the path. They are defined only by the coordinate
of the initial and final points of the path, therefore the second field of force is potential.

Let s be the sought distance, then from the equation of increment of M.E.
AT+AU = A,

(0—lmv§) + (+ mg s sina) = - kmgcosa s

2
2
Yo /.
or, s= 2g/(sma+kcosa)
-kmvg
Hence Af,- --kmgcosas- m

Velocity of the body at height 4, v, = V2g (H - h), horizontally (from the figure given in
the problem). Time taken in falling through the distance 4.

t= V _ZEh_ (as initial vertical component of the velocity is zero.)

Now s=v = V2gH+h x\/%g”—=\/4(ﬂh_h2)
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1.136

1.137

For s, % (Hh - k%) = 0, which yields h -52{-

Putting this value of 4 in the expression obtained for s, we get,
smax = H

To complete a smooth vertical track of radius R, the minimum height at which a particle

S . .
starts, must be equal to —2-R (one can proved it from energy conservation). Thus in our

problem body could not reach the upper most point of the vertical track of radius R/2.

Let the particle A leave the track at some point O with speed v (Fig.). Now from energy
conservation for the body A in the field of gravity :

mg[h-g-(l +s/in9)]- —;-mv2

or, v? = gh(1 - sin 6) 1)
From Newton’s second law for the particle at
the point O; F, = mw,, A
2
. m

N +mgsin0 = %) A
But, at the point O the normal reaction N = 0
So, V= gih-sin 0 2

From (3) and (4), sin 0 = -:3-)1 and v = V %}-l-

After leaving the track at O, the particle A comes in air and further goes up and at maximum
height of it’s trajectory in air, it’s velocity (say v') becomes horizontal (Fig.). Hence, the
sought velocity of A at this point.

VvV =vcos(90-0)= vsinO= % %ﬁ

Let, the point of suspension be shifted with velocity v, in the horizontal direction towards

left then in the rest frame of point of suspension the ball starts with same velocity horizontally
towards right. Let us work in this, frame. From Newton’s second law in projection form
towards the point of suspension at the upper most point (say B) :

v’ v

mg+T=—7- o, T=—=-mg (1)

Condition required, to complete the vertical circle is that T2 0. But 2)
—;-mvis mg(2l)+%—mv,2, So, V2= V2 -4gl 3)
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From (1), (2) and (3)

2
m(vy —4gl
T= -—-——A—;g——)-mgzo or, v,z V5 gl

1 <——I, —
/, N~

/, \\
VA (min) = Y3 8! / yT W
] \!/mg ¢
[}
; —C
\ T /

Thus

From the equation F, = mw, at point C

mv? \
= l (4) \\\ l ,,/
N\
Again from energy conservation .. -7 ’
. -..h-—-&:-+

1 1 A

> mv2 = -z-mvf +mgl Va ®)
From (4) and (5)

T=3mg

Since the tension is always perpendicular to the velocity vector, the work done by the
tension force will be zero. Hence, according to the work energy theorem, the kinetic energy
or velocity of the disc will remain constant during it’s motion. Hence, the sought time

t= 5;\, where s is the total distance traversed by the small disc during it’s motion.
0

Now, at an arbitary position (Fig.)

ds= (I[,-R9)do,

/R

SO, s-f(lo—RB)dB

0
L ORI I3
Ol‘, S = E - -Z—EE = _Z_R_
2
H the required time I = o
ence, q , RV,

It should be clearly understood that the only uncompensated force acting on the disc A
in this case is the tension T, of the thread. It is easy to see that there is no point here,
relative to which the moment of force T is invarible in the process of motion. Hence
conservation of angular momentum is not applicable here.

Suppose that Al is the elongation of the rubbler cord. Then from energy conservation,
AU, +AU, =0 (as AT = 0)
1 2
or, -mg(l+AI)+:2-|<AI = 0

or, %—KAlz-—mgAl-mgl-O



74

1.140

1.141

mg:\/(mg)2+4x gmgl y

K
2 —
)

or, Al =ﬂ‘1[1+ 1:39}

L
2 x mg
Since the value of V 1+ rzn_Kgl is certainly greater than 1, hence negative sign is avoided.

So, Al = '—”5(1+\/1+3—'51)
K mg

When the thread PA is burnt, obviously the speed of the bars will be equal at any instant
of time until it breaks off. Let v be the speed of each block and 0 be the angle, which
the elongated spring makes with the vertical at the moment, when the bar A breaks off
the plane. At this stage the elongation in the spring.

Al= lysecO-1];=1,(secO-1) (1)
Since the problem is concerned with position and there are no forces other than conservative

forces, the mechanical energy of the system (both bars + spring) in the field of gravity is
conserved, i.e. AT+ AU =0

So, 2 -;-mvz) + %’K Io2 (sec 0 - 1)* - mglytan 6 = 0 (2)
From Newton’s second law in projection form N
along vertical direction : 9
mg=N+xly(secO-1)cos 0 KZO(S&G-D
But, at the moment of break off, N = 0. AN -
Hence, x I;(sec 0 - 1) cos 8 = mg |
K ly—-mg
or, cos 0= T 3)
my

. Smg . . . . a

Taking x = T simultaneous solutionnof (2) and (3) vields :
0
19g,
y= 2 1-7m/s.

Obviously the elongation in the cord, Al= [, (sec 0 ~ 1), at the moment the sliding first
starts and at the moment horizontal projection of spring force equals the limiting friction.

So, k; Alsin®= kN : ¢))
(where k, is the elastic constant). KAL 0 N
From Newton’s law in projection form along
vertical direction : 1
K, Alcos 0+ N = mg. L. fr
or, N=mg-x,Alcos 8 > {2)
From (1) and (2),

Kk, Al'sin @ = k(mg -k, Al cos 6) Ymg
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K, = kmg
17 Alsin 8 + kAl cos 0

From the equation of the increment of
mechanical energy : AU + AT = A,

1
or, (—2~K1A12)-Af,
kmg Al* oA
2Al(sinO+kcos@) “f
A kang 1, (sec 0 - 1)
fr™ 2 (sin O - k cos 0)

1.142 Let the deformation in the spring be Al, when the rod AB has attained the angular velocity .
From the second law of motion in projection form F, = mw, .

or,

or,

Thus

= 0-09] (on substitution)

m’ Iy

K —M(,'Jz

K Al= mu)2(lo+Al) or, Al=
. 1 2 1 2
From the energy equation, A_, = 5mv” + 5.k Al

= Lo Uy + AP + 2x AP

2
2 2
1 5 ; mw? Iy 1 mo? 102
= —mn |+ +-K
2 * x-ma?®) 2 |k -mo?
Pyd+r 2
On solving A= '—(-—9—71—(———:;'—), where 1} = mo
2 (1-w° K

1.143 We know that acceleration of centre of mass of the system is given by the expression.

—> —
— MW, +my W,

YeR T v m,
Since f&: = — W’z i
> (m-m) ;’71
- Q) \/
1 T My
g —>
Now from Newton’s second law F = mw, for
the bodies m; and m, respectively.
- AT
. -5
T+m g=mw 2] T
- — 4 7772 W

wl m lng

Solving (2) and (3)

;.:.; = .(_Tl_:.ﬂz)_g (4) ‘m’g

my +m2
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1.144

1.145

1.146

Thus from (1), (2) and (4),

As the closed system consisting two particles
m; and of m, is initially at rest the C.M. of

the system will remain at rest. Further as
m, = m,/2, the C.M. of the system divides the

line joining m, and m, at all the moments of

time in the ratio 1 : 2. In addition to it the
total linear momentum of the system at all the
times is zero. So, 1'5; =— 13; and therefore the

velocities of m, and m, are also directed in

opposite sense. Bearing in mind all these thing,
the sought trajectory is as shown in the figure.

First of all, it is clear that the chain does not
move in the vertical direction during the
uniform rotation. This means that the vertical
component of the iension T balances gravity. oY
As for the horizontal component of the tension

7, it is constant in magnitude and permanently

directed toward the rotation axis. It follows from C
this that the C.M. of the chain, the point C, ’,
travels along horizontal circle of radius p (say). /7
Therefore we have, /

TcosO= mg and Tsin 0= mw®p 7

p= g_t_qle_e_ 0-8 cm
®

Thus

and T= e SN
cos O

(a) Let us draw free body diagram and write Newton’s
second law in terms of projection along vertical and
horizontal direction respectively. L

Ncosa-mg+ frsina=0 (1)

frcos o - Nsino= mo?l )

From (1) and (2)

&

frecos a- Z:;Z (- frsina +mg) = mw’ | Vmg
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w?]
So, fr=mg sina+Tmsa = 6N A3
(b) For rolling, without sliding,
fr<s kN

but, N = mg cos &« —m w2 I sin o
w?1 2
mg sina+-g—cosa < k(mgcosa-mw*lsina) [Using (3)]

Rearranging, we get,

mw?21(cosa+ksina) s (kmgcos a—mgsina)

Thus wsVg(k-tana)/(1+ktana)l =2 rad/s

(a) Total kinetic energy in frame K' is
1 - P 1 - P
T= 5"‘1("1"/ )2+-2-m2(v2—V )?

P
This is minimum with respect to variation in V, when
! - > - -
Q—I_-;- 0, ie. ml(vl-V)2+m2(v2-V)-0
114

—> —>
- m1v1+m2V2 -
V= =V,

or
m;+m,

Hence, it is the frame of C.M. in which kinetic energy of a system is minimum.

(b) Linear momentum of the particle 1 in the K’ or C frame

Py 1\71 c m +m, 1 2
> —- - mym
or, p1= n(vy-v,), where, p= —— = reduced mass
Similarly, pr=n(vy-v})
e g = ~ -—>» —>
So, |pil=|p2l= P= uv, where, v = |v,-v, (3)

Now the total kinetic energy of the system in the C frame is

~2 ~2 ~)
TeT +T,m L2y L . P
T- T+ D= gt 9= 20

~ 1 1
Hence T= —z-uvn,=—2—p.|
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1.148

1.149

1.150

To find the relationship between the values of the mechanical energy of a system in the
K and C reference frames, let us begin with the kinetic energy T of the system. The
velocity of the i-th particle in the K frame may be represented as v; = ;7;' + V. Now we

can write

1 1 = =~
T= 2 '2"'”."’?'-' E 5'”;(‘71"‘"—’-2)'(";*‘75)

1 ~» - =y 1 2
Since in the C frame E m; 3:’ = 0, the previous expression takes the form

T=T+ %m vﬁ.- i’+%m V2 (since according to the problem v.= V') 1)

Since the internal potential energy U of a system depends only on its configuration,
the magnitude U is the same in all refrence frames. Adding U to the left and right

hand sides of Eq. (1), we obtain the sought relationship

E-'E«'+%-mV2

As initially U= U= 0, so, E= T
From the solution of 1.147 (b)

~ 1
T= EMI‘-’T-‘-’;I,

As vilv,
~ 1 mm
Thus T 2ml+m2(v§+v§)

Velocity of masses m, and m,, after ¢t seconds are respectively.
-’ -  —> -’ - —>
-V, =vi+gtand v; = v, +g1
Hence the final momentum of the system,
—» —»' —! - —» —->
P=mv, +myv, = mvi+myvy+(m +m,)gt

—> —> —> —> —>
=po+mgt, (Where, py= myv; +m,v, and m= m; +m,)

. 1
And radius vector, Fg- ‘7;“'5—’(:‘2
— —
(myvi+myvy)t 1 .y
+=gt
(m;+m;) 2

—> —>
- 13 —_ MV +tmyv,
= Vot+5gt°, where vym —————=

2 m; +m,
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1.151 After releasing the bar 2 acquires the velocity v,, obtained by the energy, conservation :

1.152

1.153

1 1 K
-2-m2v§- Exf or, vz-x‘v ;2- (1)
Thus the sought velocity of C.M.
K
0+myx V m, xvVm,
Vem ™ m +m ( m,+m
1T 1 +my)
Let us consider both blocks and spring as the physical system. The centre of mass of the
system moves with acceleration a = ;n-———f—m towards right. Let us work in the frame of
1 2

centre of mass. As this frame is a non-inertial frame (accelerated with respect to the
ground) we have to apply a pseudo force m, a towards left on the block m, and m, a

towards left on the block m,

As the center of mass is at rest in this frame,

the blocks move in opposite directions and

come to instantaneous rest at some instant. The M, a
elongation of the spring will be maximum or jp o 24
minimum at this instant. Assume that the block €— m my —>F

m, is displaced by the distance x, and the block T 777777777777 777/77

m, through a distance x, from the initial

positions.

From the energy equation in the frame of C.M.
AT + U = A_,

(where A_, also includes the work done by the pseudo forces)

Here,

AT=0, U=Zk@ +x) and

— | X

ext 1 ’
m, +m, m;+m, m,+m,
1 m (x, +x,) F
or, =k(x + x2)2
2 m; +m,
S 0 2m F
0 X;+xy, =0 or x; + Xy = ———
’ 1772 > 2 k(m +m)
: . 2m F
Hence the maximum separation between the blocks equals : [; + ——————
k(m, +m,)

Obviously the minimum sepation corresponds to zero elongation and is equal to [/,

(a) The initial compression in the spring Al must be such that after burning of the thread,
the upper cube rises to a height that produces a tension in the spring that is atleast equal
to the weight of the lower cube. Actually, the spring will first go from its compressed
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state to its natural length and then get elongated beyond this natural length. Let / be the
maximum elongation produced under these circumstances.

Then
kKl = mg 1)
Now, from energy conservation,
%KAIZ-mg(AI+I)+%K12 ?)
(Because at maximum elongation of the spring, the speed of upper cube becomes zero)
From (1) and (2),

2
A12__2mgAl_3m2g2m 0 or, Al= 3nfg’ -mg
K K K K

Therefore, acceptable solution of Al equals -3-?

(b) Let v the velocity of upper cube at the position (say, at C ) when the lower block

breaks off the floor, then from energy conservation.
1

S %K(Alz-lz)—mg(l+Al)

(where l= mg/x and Al = 7%&)

2
or, v 3278 ¢3)
K

mv+0
2m

(spring+ two cubes) further rises up to A y.. T' E CTU‘

I
2 m) Vi 2m) g Arg, !

-2 —Let, the CM. of the system

At the position C, the velqcity of CM; vpo =

N

Now, from energy conservation,

ve VP 4 mg
on Ayc2=‘2g=8g“ K

Al
But, uptil position C, the C.M. of the system )L
has already elevated by,
(Al+)m+0 . 4 mg
2m K
Hence, the net displacement of the C.M. of
the system, in wpward direction

8 mg

K r7777777,;

SO R
V)

Aycy =

Ayc= Ayci+Aye,=

Due to ejection of mass from a moving system (which moves due to inertia) in a direction
perpendicular to it, the velocity of moving system does not change. The momentum change
being adjusted by the forces on the rails. Hence in our problem velocities of buggies
change only due to the entrance of the man coming from the other buggy. From the
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Solving (1) and (2), we get

my Mv
“M-m M-m
As v; tl vand v, 14V

vy and v, =

—» -
— -my My

vV, =
1 M-m) M -m)
From momentum conservation, for the system “rear buggy with man”

M+m)vg=m(u+vg)+Mvg 1)

So, and v, =

From momentum conservation, for the system (front buggy + man coming from rear buggy)
Mvy+m@@+vg)= (M+m)v,

oo Mu m
F M+m M+m
Putting the value of v, from (1), we get

e

0T M+ m?
(i) Let 171' be the velocity of the buggy after both man jump off simultaneously. For the
closed system (two men + buggy), from the conservation of linear momentum,

MF;-er(u'-i-V;)- 0

So, @+ vg)

-  =2mu

1% M+ 2m @)
(ii) Let v~ be the velocity of buggy with man, when one man jump off the buggy. For
the closed system (buggy with one man + other man) from the conservation of linear
momentum :

or,

0-(M+m)17"+m(17+\7") (2)
Let \7; be the sought velocity of the buggy when the second man jump off the buggy; then
from conservation of linear momentum of the system (buggy + one man) :

M+m)v" = MV, +m{ii+v,) ?3)
Solving equations (2) and (3) we get

- m@2M+ 3m)u
Y25 (M +m) (M +2m)

)

From (1) and (4)
V2 m

"v—l'- 1+-————2(M+m)>1

Hence v,> v,

The descending part of the chain is in free fall, it has speed v= V2 gh at the instant, all

its points have descended a distance y. The length of the chain which lands on the floor
during the differential time interval dt following this instant is vdt.
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1.159

For the incoming chain element on the floor :

From dp, = F, dt (Where y - axis is directed down)
0-(Avdt)v= F,dt
or Fya—kvz--—Zkgy

}3%

Hence, the force exerted on the falling chain
equals Av? and is directed upward. Therefore

from third law the force exerted by the falling {
chain on the table at the same instant of dy — -
time becomes A v* and is directed downward. t v

Since a length of chain of weight (Ayg) already lies on the table the total force on the
floor is (2Ayg) + (Ayg) = (3Ayg) or the weight of a length 3y of chain.

Velocity of the ball, with which it hits the slab, v = V2 gh
After first impact, v' = ev (upward) but according to the problem V' = %, SO e= ;1-' ¢))

and momentum, imparted to the slab,

=mv-(-mv)=mv(l+e)
Similarly, velocity of the ball after second impact,

Vie eV = év

And momentum imparted = m (V'.+ V' )= m(1 +e)ev
Again, momentum imparted during third impact,

=m(l+e) e2v, and so on,
Hence, net momentum, imparted = mv(1 +e) + mve (1 +e¢) + mve? l+e)+...

= mv(1+e)(1+e+e2+...)

(1+e)

mv i-e)’ (from summation of G.P.)

1
1+—
[+
- V2gh (_T' mV2gh | (n+1)/ (n-1) (Using Eq. 1)
1-—
n)

0-2kg m/s. (On substitution)
(a) Since the resistance of water is negligibly small, the resultant of all external forces
acting on the system “a man and a raft” is equal to zero. This means that the position of
the C.M. of the given system does not change in the process of motion.

i.c. 7o = constant or, ArZ= 0 ie. y m;A7= 0

or, m(AF;M +Ar;;)+MArj; =0
Thus m(TN+T;+MT:= 0, or, I=- ml”
’ > m+M

(b) As net external force on “man-raft” system is equal to zero, therefore the momentum
of this system does not change,

So, 0= m[v" (£)+v,(0) ] + MV, (1)
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1.159 (a) Since the resistance of water is negligibly small, the resultant of all external forces

1.160

1.161

1.162

acting on the system “a man and a raft” is equal to zero. This means that the position of
the C.M. of the given system does not change in the process of motion.

i.e. ;'-E- constant or, A?E =0 ie. 2 m; Ar—?- 0

or, m(Ar‘;M +Ar‘,;)+MAr‘; =0
Thus m(T"+f).+Ml—; 0, or, I=- ml”
’ > m+M

(b) As net external force on “man-raft” system is equal to zero, therefore the momentum
of this system does not change,

So, O=m[v" () +% O]+ M ()
or, \7;(! = -‘:11%% (1)

As v () or 172’ (#) is along horizontal direction, thus the sought force on the raft
Mdv, (1) Mm dv (f)
dt m+M dt

Note : we may get the result of part (a), if we integrate Eq. (1) over the time of motion
of man or raft.

In the refrence frame fixed to the pulley axis
the location of C.M. of the given system is

described by the radius vector
AR MAry+(M-m)A7g, 0 +mAT,
¢ M
But  AFy= ~AFp_m
—> —> —> M-m
ml’
Thus Arp= M

Note : one may also solve this problem using momentum conservation.

Velocity of cannon as well as that of shell equals V2 glsin o down the inclined plane
taken as the positive x — axis. From the linear impulse momentum theorem in projection
form along x - axis for the system (connon + shell) i.e. Ap = F At:

pcosa-MV 2glsina = Mgsina At (as mass of the shell is neligible)
peosa-MV2glsina
Mg sin a

From conservation of momentum, for the system (bullet + body) along the initial direction
of bullet

or, At

my,

m+M

mvy= (m+M)v, or, v=



84

1.163

1.164

When the disc breaks off the body M, its velocity towards right (along x-axis) equals the

velocity of the body M, and let the disc’s velocity’in upward direction (along y-axis) at
that moment be V'

y
From conservation of momentum, along x-axis for the system (disc + body)
’ ’ my
mv=(m+M)V, or V = Y 1)
And from energy conservation, for the same system in the field of gravity :
l 2 —-— l 2 _1_ 2 '
S mv= 2(m+M)vx+2mvy+mgh ,
where £’ is the height of break off point from initial level. So,
1, 1 mv 1 .
5 mv -2(m+M)(M+m)+2mvy+mgh, using (1)
2 po_mt
or, v’—v-(m+M)_ g
Also, if A" is the height of the disc, from the break-off point,
then, V'§ = 2gh"
2 m v2
So, 26 (W' +h' )= v “BLem
Hence, the total height, raised from the initial level
M2
= hl hu - —_—
* 26 (M +m)

(a) When the disc slides and comes to a plank, it has a velocity equal to v = V2 gh. Due
to friction between the disc and the plank the disc slows down and after some time the
disc moves in one piece with the plank with velocity V' (say).
From the momentum conservation for the system (disc + plank) along horizontal towards
right :

my
m+M
Now from the equation of the increment of total mechanical energy of a system :

mv=(m+MVv or V=

1 2 1
—2-(M+m)v2——2—mv2= A,

2.2
or, —1—(M+m)———"—ll—-2---l—mv2=Af
2 (m+M)°* 2 r
1 2 m2 |
so, 5V [M+m_m] A
mM
Hence, Af,— —(m+M)gh= - ugh

mM
(where W=7

= reduced mass)
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(b) We look at the problem from a frame in which the hill is moving (together with the
disc on it) to the right with speed u. Then in this frame the speed of the disc when it just
gets onto the plank is, by the law of addition of velocities, v = u + V2gh. Similarly the
common speed of the plank and the disc when they move together is

V o= us—= v2gh.

m+M
Then as above A, = -1—(m +M)§;'2 -1 =mv? - lMu2
Fo2 2 2
1 2 m? 1 2 1
= —(m+M) {u + u\/ 7i+ 2gh} - Am+M)u’ ~=-m2uv2gh - mgh

We see that Xf, is independent of u and is in fact just - p g & as in (a). Thus the result
obtained does not depend on the choice of reference frame.
Do note however that it will be in correct to apply “conservation of enegy’’ formula in

the frame in which the hill is moving. The energy carried by the hill is not negligible
in this frame. See als6 the next problem.

In a frame moving relative to the earth, one has to include the kinetic energy of the earth
as well as earth’s acceleration to be able to apply conservation of energy to the problem.
In a reference frame falling to the earth with velocity v, the stone is initially going up
with velocity v, and so is the earth. The final velocity of the stone is 0 = v - gt and
that of the earth is v, + —M— gt (M is the mass of the earth), from Newton’s third law,
where t = time of fall. From conservation of energy

%—mvﬁ + —;-Mv0 + mgh = %—M Vo + %nl—vo)
1 2 m2
Hence 5V (m + ﬁ) = mgh

Negecting % in comparison with 1, we get
vg = 2ghor v, =V 2gh

The point is this in earth’s rest frame the effect of earth’s accleration is of order ;—;— and

can be neglected but in a frame moving with respect to the earth the effect of earth’s
acceleration must be kept because it is of order one (i.c. large).

From conservation of momentum, for the closed system “both colliding particles”
— = —»
myv; +my, = (my+m,) v

Myt myv, ie21) i_6k) - -
or, o T 22=1(3l 2j)+2(4j 6k)=l—:2]—:4,?
m; +m, 3

Hence [v]=V1+4+16 m/s= 46 m/s
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1.168

For perfectly inelastic collision, in the C.M. frame, final kinetic energy of the colliding
system (both spheres) becomes zero. Hence initial kinetic energy of the system in C.M.
frame completely tumns into the internal energy (Q) of the formed body. Hence

~ 1 - —»2
0= T- Jufii-7
Now from energy conservation AT = - Q = -%p |{;1’-V2"2,

In lab frame the same result is obtained as

1 (g +mn)® =12 =»)2
AT = > ~5 my |V + my |y
2 m+m, 2

1 2
-—EHIQ-FEI

(a) Let the initial and final velocities of m; and m, are z-i; , i—l; and v, ggrespecﬁvely.

Then from conservation of momentum along horizontal and vertical directions, we get :

m; u; = m,v,cos 1)
and m,v,= m,v,sin0 2 f 4%
Squaring (1) and (2) and then adding them, Uy

miy= mi i +7) () R o W
Now, from Kinetic energy conservation, \&

1 2 1 7 1 2 A
—2—m1u1- 5m2v2+5m1v1 3
v
2

m
or, m (uf - v%) = m2v§ =-m, —r;% (uf + V%) [Using (3)]

2
m m
or, u% 1——-1-v§ 1,+——1—
my my
v my-m
or, (—l) = A1 )
) m+m
So, fraction of kinetic energy lost by the particle 1,
1 2 1
gy %
1 2
2 Ml “
My —my my .
L= oy [Using ()] ©)

(b) When the collision occurs head on,
Ty = My, +mov, )

and from conservation of kinetic energy,
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1 2 1 2 1 2
oMU = ’2"”1"1*5”‘2"2

2
my (u; ~vy)

- imieom, ] [Using (5)]

2 my
or, 121 (1 +1’:—L)- u, (%—1)
2
m./my,-1
or, .Y_l_= (_i._z__) (6)

uy 1+m1/m2)

Fraction of kinetic energy, lost
2

2
Vi m; - m, 4mym,
ul (m1 +m2) (m, + my)* sing (6)]

(a) When the particles fly apart in opposite direction with equal velocities (say v), then

from conservatin of momentum,

and from conservation of kinetic energy,

}-ml u2- —l—ml v2+lm2v2

2 2 2

or, m,u*= (m, +m) v (2)
From Eq. (1) and (2),

) i

mu“= (m +m,) ——— U3 L
(m2 - ml) - /s ="

or, mg-3m1m2=0

m
Hence m—;- % asm, » 0

(b) When they fly apart symmetrically relative to the initial motion direction with the
angle of divergence 6= 60°,
From conservation of momentum, along horizontal and vertica! direction,

my uy = my v, cos (6/2) + m, v, cos (8/2) 1)
and m, v, sin (6/2) = m, v, sin (0/2)
or, m; v, = myv, 2
Now, from conservation of kinetic energy,
1 1 1
5’"1“3*“'5’"1"%*5’”2"% (3)

From (1) and (2),

v
m,u, = cos (6/2) (m1 v, + 1m2)== 2m, v, cos (6/2)
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So, u; = 2v,cos(6/2) 4)
From (2), (3), and (4)
2.2
4m, cos’ (0/2) v} = m v} 4 w

2 my
o, 4cos“°(0/2)=1+—
my

m,

or, — = 4cos? =-1

N

m
1 )
m,

and putting the value of 0, we get,
If (vy,,v;,) are the instantaneous velocity components of the incident ball and
(v sz) are the velocity components of the struck ball at the same moment, then since
there are no external impulsive forces (i.e. other than the mutual interaction of the balls)
We have u sino = Viy 5 Vg 0

mucosa=myv, +myv,,

The impulsive force of mutual interaction satisfies
d F d
dt(le)"' m-— dt(VQx)
( F is along the x axis as the balls are smooth. Thus Y component of momentum is not
transferred.) Since loss of K.E. is stored as deformation energy D, we have
1 2 1 2 1 2
D Fmu’ = smv," =~ Smv,

1 1 1

2 2 2
1 22 2 2 2 _ 2
2m[mu(:osor. mv,* ~ (mucosa~ mv, ) ]

= Etn-— [ 2m2ucosav1‘x- 2m?v, ] = m (v, ucosa - v,,?)

2

-m u’cos’or _ [ ucosa
4 2 Lx

We see that D is maximum when
U COsaL

and Dm =

D.. 1 2

1 ->
Then n= 7 = 5 cosa= o U
" &
2
> XC

On substiuting o = 45° >
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1.171 From the conservation of linear momentum of the shell just before and after its fragmentation

1.172

= 3I+ F;+§; (1)

where V; ) \72’ and 73' are the velocities of its fragments.

. 2_.2. .2 2

From the energy conservation  3mv™ =v] + v, +; 2
=p - - - - —»

Now V,OI Ve = V; = Vo=V~ V 3)

where \72 = v'= velocity of the C.M. of the fragments the velocity of the shell. Obviously
in the C.M. frame the linear momentum of a system is equal to zero, so

3;+;—‘2’+3';-0 C))

Using (3) and (4) in (2), we get
3nv2-(17’+;—1’)2+(§152’)2+(?-;—'1’—72’)2 -3v2+217§+25§+2;—;-1?

or, 202427, 7,cos0 + 272+ 3 (1 ~q)? =0 )
If we have had used v, = — v, - v3, then Eq. 5 were contain ¥, instead of %, and so on.
The problem being symmetrical we can look for the maximum of any one. Obviously it

will be the same for each.
For V;to be real in Eq. (5)

472 cos’0 = 8(293 + 3 (1 -m) %) or 6(n - 1% = (4 - cos’0)7 2

So, VoS Vv SMm-1) or vz(m,-V2(n-1 v

4 - cos’0

Hence v, = I‘_»fr;";lm =v+V2(n-1) v-v(1+V2(n-1) '-lkm/s

Thus owing to the symmetry

Vimax) = V2 (max) = Vi(max) = ¥ (1 +V2(n-1) ’ =1km/s
Since, the collision is head on, the particle 1 will continue moving along the same line
as before the collision, but there will be a change in the magnitude of it’s velocity vector.
Let it starts moving with velocity v, and particle 2 with v, after collision, then from the

conservation of momentum
mu=mv,+mv, or, u= v, +v, 1)
And from the condition, given,
1 il (lmv§+lmv%)
— - 2
) 3 2 2 1 v%
1 2 u

Emu

or, vi + vg = (1-m)u? (2)
From (1) and (2),

v§+(u-v1)2= (1-m)i?

or, vf+u2-2uv1+v§-(1-n)u7
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or, 2v21’—2v1u+nu2-0
Va2 2
So, V= 2uz u 48’qu

= %[utvuz-Znu2]= %u(l:Vl—Z’q)

Positive sign gives the velocity of the 2nd particle which lies ahead. The negative sign is
correct for v, .

So, v, = %u (1 -v1-2n )= 5m/s will continue moving in the same direction.

Note that v, = 0 if n= 0 as it must.

Since, no external impulsive force is effective on the system “M + m”, its total momentum
along any direction will remain conserved.
So from p, = const.

m u
M cos 0 )

mu= Mv,cos@ or, v,=
and from p = const
. M .
mvy,= Mv;sin@ or, v,= —, Visin 0= utan @, [using (1)]
Final kinetic energy of the system

1 -, 1
T_f= 5MV2+EMV§.

And initial kinetic energy of the system= %—muz

T,-T.
So, % change = -—'LT-—-'-x 100

1
2 2
-l-muztan29+lM-'—n-—- 4 1 2

2 2702 o2 2T
. - M* cos“ 0 « 100
2
— mu
12 u
—u?‘tanze+l—r§-uzsec26——u2 -
2M 2
= x 100
L
2

/ .
- ltan20+r—{sec29-1)x 100

and putting the values of © and z , we get % of change in kinetic energy= - 40 %

(a) Let the particles m; and m, move with velocities V; and V;respectively. On the basis
of solution of problem 1.147 (b)

P=uv, =n |-,
rel 172
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As v Llv,
m
So, p= qu1+v2 where p = 2
my +m,
(b) Again from 1.147 (b)
"' _l_ vz — —»,2
2 UV = 2 F U Ivl -V I
So, T= —u(v1+v,)
From conservation of momentum
- —_ ! — !
Pp=pP P
2
50 (Pi-Pi ) = Pi-2pi P/ cosd, + p/* = py”°
From conservation of energy
2 r2 2
Py 21 P>

2m, = 2m, + 2m,

Eliminating p,’ we get

, m, , m,
0 = p, 2(1 + —”71-) - 2p; plcose1 +p12(1 - —r;;)

This quadratic equation for p,’ has a real solution in terms of p, and cos 0, only if

m?
4cos’0,z4|1-— »>!
my 2
2
m
or sin® 1S —5 <~
rn1 7> 0‘- -
R 7
. my m, '
or sinO;<s+— or sinf,2-—
This clearly implies (since only + sign makes sense) that 1
m
2
sin 0 -—
1 max m

From the symmetry of the problem, the velocity of the disc A will be directed either in
the initial direction or opposite to it just after the impact. Let the velocity of the disc A
after the collision be V' and be directed towards right after the collision. It is also clear
from the symmetry of problem that the discs B and C have equal speed (say v") in the

directions, shown. From the condition of the problem,

d
n —_— .
cosB-——c-l-Z--Izlso, sin 0= V4 -n? /2 1)
For the three discs, system, from the conservation of linear momentum in the symmetry

direction (towards right)
mv=2mv'sin@+mv or, v=2v"sin0+V 2)
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From the definition of the coefficeint of restitution, we have for the discs A and B (or C)

v/ —v' sin O
vsin9 -0

But e = 1, for perfectly elastic collision,
So, vsin6= v’ -v'sin 0 €))

From (2) and (3), A
,=v(1—25i1129) A
(1 + 2 sin® 6)

v m%-2) .
- T using (1)

Hence we have,

v = V(n -22)
6-n

Therefore, the disc A will recoil if v} <v2 and stop if 1} = V2.

Note : One can write the equations of momentum conservation along the direction per-
pendicular to the initial direction of disc A and the consevation of kinetic energy instead
of the equation of restitution.

(a) Let a molecule comes with velocity V;to strike another stationary molecule and just

.. . . pe —>' ' .
after collision their velocities become v, and v , respectively. As the mass of the each

molecule is same, conservation of linear momentum and conservation of kinetic energy
for the system (both molecules) respectively gives :

= = =
Vi= Vo 4V,

2 it
and vi=Vitv,

From the property of vector addition it is obvious from the obtained Egs. that

._’ I Iﬁ'
V1-L"2 or v ,-v,=0

(b) Due to the loss of kinetic energy in inelastic collision v% > v’2 + v’%

'

s0, v L v 2 > 0 and therefore angle of divergence < 90°.

Suppose that at time ¢ the rocket has the mass m and the velocity v, relative to the
reference frame, employed. Now consider the inertial frame moving with the velocity that
the rocket has at the given moment. In this reference frame, the momentum increament
that the rocket & ejected gas system acquires durmg time dt is,

dp= mdv+p.dtu-F dt

—
u

dv
or, mdt—F—M

— —
or, mw=F - pu
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1.179 According to the question, F=0and u = — dm/dt so the equation for this system becomes,

1.180

1.181

dv. dm —
m-——= "l

dt dt

As dv?}lu so, mdv= —udm.
Integrating within the limits :

m
-l—fdv=— dm or = In—>
u m u m
0 m,
my
Thus, v= uln —
m
—> . —> —> mo
As dﬂl u, so in vector form v= - u ln;l—
. —>
According to the question, F (external force) = 0
—
So mlv., dm -
’ d dt
As avt | u,
so, in scalar form, mdv= -udm
wdt dm
or, — o —
u m

Hence, m=mye

As 1? = 0, from the equation of dynamics of a body with variable mass;

—_p
mﬂs l?i,'n' or, dv= ;;"_lﬂ (1)

dt dt m
Now dv™ |u’and since &L, v, we must have | dv"| = vyd o (because v, is constant)
where d a is the angle by which the spaceship turns in time dt.

dm u dm
So, -u —=vyda or, do= -——
m Vo M

u dm u (’"0)
or, a= —— — = — In}| —
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1.182

1.183

1.184

We havcém—= -Q or, dn= - pdt

dr
m 4
Integrating f dm= —p f dt or, m= my- @t
m, 0
As u'= 0 so, from the equation of variable mass system :
(mo—W)E—= F o, T = Y= F/(my - nt)
;- ¢
or, f dv=F _d
(my - 1)
0
F m
Hence V= F In 0
n my — ut

Let the car be moving in a reference frame to which the hopper is fixed and at any instant
of time, let its mass be m and velocity g
Then from the general equation, for variable mass system.

m——=F+u —

dt dt

We write the equation, for our system as,

dv_ g pdm o a
dt d )
So 2@ =F
Fr
and g ild on integration.
m
But m=my, + ut
-—p
—> Ft
so, ve —
myll+ =
o
— —>
Thus the sought acceleration, w= dv = F 5

dt
m, (1 + ﬁ)
m
Let the length of the chain inside the smooth horizontal tube at an arbitrary instant is x.
From the equation,
dm

—
mw=F +u —
dt
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-
asu=0, F11 w, for the chain inside the tube

Axw= T where A= —’;1 1)
Similarly for the overhanging part, AV

a
w=0 mmgFﬂ
Thus mw=F _m X T
h

oo Ahw=Ahg-T 2)
From (1) and (2), )\hg
dv
AMx+h)w= Ahg or (x+h)vds=hg B
dv
or, x+h)v = gh,
x+h)vy "oy~ 8
[As the length of the chain inside the tube decreases with time, ds = -dx.]
or, vdv=-ghx+h
v 0
. dx
Integrating, f vdv= -gh f T h

0 (-h)
2
or, 12~= gh In (%) or v= V 2gh In (}I;)

Force moment relative to point O ;

—> —>

Let the angle between M and N,

a=45°att =1, »

Then L ;4’ N (@+bry)-2bt)
VIT |M|IN| V@+bie 2b

2% 15 b1l

\/az+b2t(;4 2bt, V a*+b 1y bt2

a .
So, 2 b2 - a2+ b1, t, or, fh= V b (as ¢, cannot be negative)
It is also obvious from the figure that the angle a is equal to 45° at the moment £,

when a = btl, ie. to = Va/b and N =2 V-Z— b.

95
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1.186

1.187

1.188

T

M@= rxp= (vgu-;—w <m (7 + §1)
1 2 ., ->
) + Tmvygt” sin|=+al(k)

2 2

= %mvogtzcosa(-—l?):

2
my, t“cos o
Thus M (t) = °32

>
Thus angular momentum at maximum height ‘V‘o
) Vg Sin &
Le.at t= —= >

g’ Y -r mg

N

3
myv, '
M|E] = | ==2]sin? o cos o = 37 kg - m2/s olLxL
2) \2 7IITTITI7777
Alternate : & 7'X
14 14
M(©) = 0 so, E{’(:)=fﬁ’dz=f(?§<m§')
0 0
t
—> 15, —> t2
=‘{ [(vot+-2-gt )xmgjdts (voxmg‘-')—z-
(a) The disc experiences gravity, the force of

reaction of the horizontal surface, and the force
F of reaction of the wall at the moment of the
impact against it. The first two forces
counter-balance each other, leaving only the
force R. It’s moment relative to any point of A
the line along which the vector I? acts or along

>
177777777 3¢

A

il
S
O

S1

normal to the wall is equal to zero and therefore

the angular momentum of the disc relative to
any of these points does not change in the given
process.

(b) During the course of collision with wall ]
the position of disc is same and is equal to
r.. Obviously the increment in linear

momentum of the ball Ap = 2mvcosan
. = . .
Here, AM = r_, x A[)'> = 2mv Il cos o n and directed normally emerging from the plane of
figure
—
Thus |AM|= 2mvicosa
—p
(a) The ball is under the influence of forces T and m g at all the moments of time, while

Ql

moving along a horizontal circle. Obviously the vertical component of T balance m gand



1.189

1.190

97

so the net moment of these two about any point becoems zero. The horizontal component
of f which provides the centripetal acceleration to ball is already directed toward the
centre (C) of the horizontal circle, thus its moment about the point C equals zero at all
the moments of time. Hence the net moment of the force acting on the ball about point
C equals zero and that’s why the angular mommetum of the ball is conserved about the

horizontal circle.

(b) Let a be the angle which the thread forms
with the vertical.

Now from equation of particle dynamics :

Tcoso= mg and Tsino = mw? I sin o

Hence on solving cos o = ;)gz__ 1)

As |H | is constant in magnitude so from figure.
—_—
|AM|= 2 M cos a Where

— —
M= 'Mil' IMf|
= |rpxmV’|= mvl(as ﬁ;ll?)

ThuslAf\il-- 2mvicos o= 2mwl?sin o cos o

Wt

_2mglafy (—%— )2 (using 1).

During the free fall time ¢t = t = V , the reference point O moves in hoizontal direction
(say towards right) by the distance V1: In the translating frame as M (0)=0, so

= (-Vri+hj )xm[gtj-Vi] > 3
-—ng'cziT-i-th(H?) J( )

= -ng(%]ic:thhl?i = -thI?

Hence |AHI= mVh

The Coriolis force is.(2m V> x & ).
Here @ is along the 2-axis (vertical). The moving disc is moving with velocity v, which

is constant. The motion is along the x-axis say. Then the Coriolis force is along y-axis
and has the magnitude 2m v, . At time ¢, the distance of the centre of moving disc from

O is vyt (along x-axis). Thus the torque N due to the coriolis force is
N = 2mvywvy along the z-axis.
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1.191

1.192

Hence equating this to -‘%{
dM
- 2m vg ot or M= mv(z, wt? + constant.

The constant is irrelevant and may be put equal to zero if the disc is originally set in
motion from the point O.

This discussion is approximate. The Coriolis force will cause the disc to swerve from
straight line motion and thus cause deviation from the above formula which will be substantial
for large .

If r = radial velocity of the particle then the total energy of the particle at any instant is
1 ... M 5
—mr°+ +kr‘=FE 1

where the second term is the kinetic energy of angular motion about the centre O. Then

the extreme values of r are determined by r = 0 and solving the resulting quadratic equation
2
kr’)* - Er* + M =0

2m
we get
5 e Ve 2k

2k

From this we see that
E=kri+r) @)
where r; is the minimum distance from O and r, is the maximum distance. Then
-%mv§+2kr§-k(r§+r§)
2

Hence, m="

V2

‘Note : Eq. (1) can be derived from the standard expression for kinetic energy and angular

momentum in plane poler coordinates :

1 .21 )
T 5 mr-+ —2- m r2 0
M = angular momentum = mr’ ©

The swinging sphere experiences two forces : The gravitational force and the tension of
the thread. Now, it is: clear from the condition, given in the problem, that the moment of
these forces about the vertical axis, passing through the point of suspension N, = 0. Con-

sequently, the angular momentum M, of the sphere relative to the given axis (2) is constant.
Thus my, (Isin @) = mv 1)

where m is the mass of the sphere and v is it s velocity in the position, when the thread
n

> with the vertical. Mechanical energy is also conserved, as the sphere is

forms an angle
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under the influence if only one other force, i.e. tension, which does not perform any work,
as it is always perpendicular to the velocity.

1, )
So, -2-mv0+mglcose= 5 mv )

From (1) and (2), we get,
Vo = V2gl/cos 0

Forces, acting on the mass m are shown in the figure. As 1_\(’ = mg,’ the net torque of these
two forces about any fixed point must be equal to zero. Tension T, acting on the mass m
is a central force, which is always directed towards the centre O. Hence the moment of
force T is also zero about the point O and therefore the angular momentum of the particle
m is conserved about O.

Let, the angular velocity of the particle be w, when the separation between hole and
particle m is r, then from the conservation of momentum about the point O, :

m(wgrg)ro= m(@r)r,

--—-———
- =~

/7 ~
0')0 rg / T~ - \\\ N
or W= ‘/ Lo ~ “
7’ [y A
. i ;
Now, from the second law of motion for m, \ 09 % .' N
1 \
\ ’
T=F=ma’r ' DN R ) m
. /
Hence the sought tension; Y o 2
2.4 2 4 R Pt
_magrgr  moyrg (
r4 r3 \ F

On the given system the weight of the body m is the only force whose moment is effective
about the axis of pulley. Let us take the sense of @ of the pulley at an arbitrary instant
as the positive sense of axis of rotation (z-axis)

As M,(0)= 0, so, AM,= M, ()= [ N,dr

t

So, Mz(t)sfng dt= mgRt
0

Let the point of contact of sphere at initial
moment (t= 0) be at O. At an arbitrary
moment, the forces acting on the sphere are
shown in the figure. We have normal reaction

N, = mgsin o and both pass through same line

and the force of static friction passes through
the point O, thus the moment about point O
becomes zero. Hence mg sin a is the only force
which has effective torque about point O, and
is given by |N |= mgRsino normally
emerging from the plane of figure.

As M(¢= 0)= 0, so, AM = Xi(:)=f1's'r’dt

Hence, M (t) = Nt = mgR sin o
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1.196

1.197

1.198

Let position vectors of the particles of the system be F: and 7: " with respect to the points
O and O’ respectively. Then we have,

— ' —»

where 7, is the radius vector of O’ with respect to O.

Now, the angular momentum of the system relative to the point O can be written as follows;

M= 3 mxm)= 3 (7 B+ Y (fox ) [using (1)]
or, M- JTI’,+(F;><F), where,ﬁ'=217; (2

From (2), if the total linear momentum of the system, p’= 0, then its angular momen-
tum does not depend on the choice of the point O.

Note that in the C.M. frame, the system of particles, as a whole is at rest.

On the basis of solution of problem 1.196, we have concluded that; “in the C.M. frame,
the angular momentum of system of particles is independent of the choice of the point,
relative to which it is determined” and in accordance with the problem, this is denoted

by M.

We denote the angular momentum of the system of particles, relative to the point O, by
ﬁ. Since the internal and proper angular momentum ﬁ, in the C.M. frame, does not depend
on the choice of the point O’, this point may be taken coincident with the point O of the

K-frame, at a given moment of time. Then at that moment, the radius vectors of all the
particles, in both reference frames, are equal (7, = r;) and the velocities are related by

the equation,

~
Vi= VitV 1)
where 17: is the velocity of C.M. frame, relative to the K-frame. Consequently, we may
write,
— ' o~
M= z m; (’Ti’x‘?)= 2 mi(’? "‘T)“‘E m;(’?";:)
-> ﬁ -— - —> —>
or, M= +m(rcxvc), aszmiri=mrc,where m=2mi.
—
or, M=ﬁ+(7:xm§:)=ﬂ+(a’xﬁ’)

From conservation of linear momentum along the direction of incident ball for the system
consists with colliding ball and phhere

mvy= mv' + -’;— vy )

where V' and v, are the velocities of ball and sphere 1 respectively after collision. (Remember
that the collision is head on).
As the collision is perfectly elastic, from the definition of co-efficeint of restitution,

V' - Vl
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Solving (1) and (2), we get,
4v, W

=35 directed towards right. _ m
In the C.M. frame of spheres 1 and 2 (Fig.) @—)_ -é>1 /2
Py = -p; and | pil=1p;| = u|¥7- 7]

Also, Tre = =Ty, thus B = 2[Fip xp;] c
ASF;C.L;;, so,ﬁ-Z[-;—ﬁz/—zi;gﬁ ;1;
(where n is the unit vector in the sense of 71’(_. x pﬁ' ) M/z O
Hence M = z ;ol

In the C.M. frame of the system (both the discs + spring), the linear momentum of the
discs are related by the relation, ;; = - ;;, at all the moments of time.
where, P1=Py=P= WV
And the total kinetic energy of the system,
T= %u v2, [See solution of 1.147 (b)]

Bearing in mind that at the moment of maximum deformation of the spring, the projection
of ,,, along the length of the spring becomes zero, i.c. v,y = 0.

The conservation of mechanical energy of the considered system in the C.M. frame gives.

L(2)4e hero (2]

Now from the conservation of angular momentum of the system about the C.M.,

1(h)(m \_,(*X\m
2(2)12%)" T2 |2 e

-1

U . . 1 2 X 2
sing (2) in (1), MV 1—(1—7(;) = kX

2
1,2 2 2) |
or, 5mV 1-(l—lo+102) = k2
mv?,x
or, — x X%, [neglecting ¥* / 17]
0
m2
As x» 0, thus x=

Kl
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1.4 UNIVERSAL GRAVITATION

1.200 We have

MvstMm, or r = 17
r r %
3
Thus Q = Ks v v

r 'Y ms/v2 - Y ms
(Here m, is the mass of the Sun.)

So T 2rym, 2xx667x10 1 x1.97x10%
Vv (349 x 10%)°

(The answer is incorrectly written in terms of the planetary mass M)

= 194 x 10" sec = 225 days.

1.201 For any planet

Mm
MR(J:)2==Y 2sor W= Y,
R R3
So, T= Z‘mﬁ- 2R [Vym,
372
(a) Thus —Ti= %
E RE
2/3
2_ Y% - (rYam:
(b) V; R’ and R, = (T o )

23

23 2/3
, Gm)""(2n) 2rYym
So Vy= o P o, V; = T -

where T= 12 years. m = mass of ths Sun.

Putting the values we get V, = 12:97 km/s

23

Accelerati vi (2mym 2
cceleration = — = X
R, \ T (T"Yms)

4/3

2 7 )
= (‘TE (ym, )"
)

215 x 10™* km/s?
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Semi-major axis= (r + R)/2
It is sufficient to consider the motion be along a circle of semi-major axis L -;R for T
does not depend on eccentricity.
3/2
r+R
o[
3

Hence T Vym n\/(r+R) /2ym,

(again m_ is the mass of the Sun)

We can think of the body as moving in a very elongated orbit of maximum distance R
and minimum distance 0 so semi major axis = R/2. Hence if v is the time of fall then

2 3
2T R/2 2 2
(———T) (——R ) or tT=T°/32

or t=T/4V2 = 365/ 4V2 = 645 days.

T=2aR>?/Vym,

If the distances are scaled down, R>? decreases by a factor 1" %and so does m . Hence
T does not change.

m,m
The double star can be replaced by a single star of mass p- 1+"2’ moving about the centre
1+ My
of mass subjected to the force y m, m, [ r*. Then
T= 272 _ 2mr?
Vimml 2
Y m, +m,
So r?a -LVyM
2n
2/3 —
o = (z”TE) M) = VIY—M (T/2 my?
(a) The gravitational potential due to m, at the point of location of m, :
m m
V2=f5’-d7’=f-1—2—1-dx= ek
X r
r r
m,m
Similarly U= - 172

r
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1.207

Hence ms Tz

L | P
dx

(b) Choose the location of the point mass as the origin. Then the potential erfergy dU of

an element of mass dM = L{dx of the rod in the field of the point mass is
dU = —ym M-dx 1
I x
where x is the distance between the element and the point. (Note that the rod and the

point mass are on a straight line.) If then a is the distance of the nearer end of the rod
from the point mass.

e >
L ] - -o—>C
> Le X —>m
dx
a+l
mM M l
U-—Y‘—l—- . -—ymllll(].-l-a)
The force of interaction is
U
F=- da

M1 (LY ymM
1 1+;‘I_L a? a(a+10)

Minus sign means attraction.

As the planet is under central force (gravitational interaction), its angular momentum is
conserved about the Sun (which is situated at one of the focii of the ellipse)
) %%
So, mv,ri=mv,r, or, vi= e 1)
1
From the conservation of mechanical energy of the system (Sun + planet),
ymm 1 ymm 1 ,
- +smvi= - +5mv,
r 2 2 2
fm, 1,75 (1m) 1 .
or, ——;Ii+§-vgga - "zs +Ev§ [Using (1)]
Thus, v,=V2ym.r [r,(r +1) ¥

Hence M=mv,r,= m\nymsrlrzl(rlw-?)
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From the previous problem, if r, , r, are the maximum and minimum distances from the
sun to the planet and v, , v, are the corresponding velocities, then, say,

mm
2 ry

ﬂ”i . .r_l Ymm-“ Ymms Ymms .
ro+r, r, 1, rtr, 24 [Using Eq. (2) of 1.207]

where 24 = major axis = r, + r,. The same result can also be obtained directly by writing

an equation analogous to Eq (1) of problem 1.191.

2 mm
Eelnity 21,
2 2mr r

(Here M is angular momentum of the planet and m is its mass). For extreme position

r=0 and we get the quadratic
2

Er2+ymmsr-gl—;l—=0

The sum of the two roots of this equation are
ymm,

mm
Thus E-—Y z

= constant

From the conservtion of angular momentum about the Sun.
My rosinG= mvri=mv,r, of, v,ri= vV,I,= yyr,sina 1)
From conservation of mechanical energy,
1 o, Ymm 1 , Ymm

PR RS
2 2,202
Vg Ym, vyrpgsin“o ym,
or, _-—- = - sing 1
2 7o 2’% "1 (U ng )
2 2Ym) 5 2.2,
or, Vo= ri+2ymer,~vyrysina = 0
0
2ym
2 2 222 N2 s
—2ym,x V4y ms+4(v0r%sm a)(o 7 )
So, r= Sym
To
2.2 .2 2
.\/1_v0r§sm a2 _ Y ro[l:t\fl—(Z-n)nsin2a]
1= Y mg o Tm;
B 2 v B 2-m)
To Y my

where 1 = v;‘;;ro [ym, (m,is the mass of the Sun).
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1.210 At the minimum separation with the Sun, the cosmic body’s velocity is perpendicular to

1.211

its position vector relative to the Sun. If 7, be the sought minimum distance, from con-
servation of angular momentum about the Sun (C).

2%
mvyl= mvr,, or, v=

ey

rmin

From conservation of mechanical energy of the system (sun + cosmic body),

=my, = - +=my
)
2 ¥ min
v ym, vy .
So, 5= +—> (using 1)
 min min
or, vozr,ﬁin+2ymsrx;m—vo2!2- 0

-2ym, ::\/47 m "'4"0 Vo 212 -ym, :«.-\/y m + v 42

2
2v0 Vo

So, ¥ min ™

Hence, taking positive root

Tonin ™ (ymg/voz)[\/l+(1v(,2/'yms)2 —1]

Suppose that the sphere has a radius equal to a. We may imagine that the sphere is made
up of concentric thin spherical shells (layers) with radii ranging from 0 to a, and each
spherical layer is made up of elementry bands (rings). Let us first calculate potential due
to an elementry band of a spherical layer at the point of location of the point mass m (say
point P) (Fig.). As all the points of the band are located at the distance !/ from the point

P, so,
0p= - l%ﬂ (Where mass of the band) ¢))
aM=(4dM2)(2nasin9)(ad6)
na
(——é‘i)smede 2

2= a’+r?-2arcosb 3

Differentiating Eq. (3), we get
ldl = arsin0dO 4)

Hence using above equations

a(p--(lz;ﬂr)dz ©)
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Now integrating this Eq. over the whole spherical layer

r+a

d9-fov= 3ot |

r
r-a

So dop= —L%M- (6)

Equation (6) demonstrates that the potential produced by a thin uniform spherical layer
outside the layer is such as if the whole mass of the layer were concentrated at it’s centre;

Hence the potential due to the sphere at point P;
- fdp= -Lfama-14
o= fdo= -TfdM=-L @)

This expression is similar to that of Eq. (6)
Hence thte sought potential energy of gravitational interaction of the particle m and the
sphere,

U= mp= _LA'l.:_'!'_

(b) Using the Eq., G, = -%—}’
M .
G = -I;T (using Eq. 7)
So E;’- -IAT{r_'and F’-mc—;’--l”‘—f’—? ()

r r
(The problem has already a clear hint in the answer sheet of the problem book). Here we
adopt a different method.

Let m be the mass of the spherical layer, wich
is imagined to be made up of rings. At a point
inside the spherical layer at distance r from
the centre, the gravitational potential due to a
ring element of radius a equals,

dp = - ‘2% dl (see Eq. (5) of solution of 1.211)

a+r

m m
So, ¢= [dp= —-%;fdl-—x;- 1)
a-r
Hence G, = _%%- 0.

Hence gravitational field strength as well as field force becomes zero, inside a thin sphereical
layer.

One can imagine that the uniform hemisphere is made up of thin hemispherical layers of
radii ranging from O to R. Let us consider such a layer (Fig.). Potential at point O, due
to this layer is,
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2
do= _ydm _ —3J1;l rdr, where dm = M 3 dnr dr
r R (2/3)nR 2

(This is because all points of each hemispherical shell are equidistant from O.)

R
Hence, qJ-fd(p- -%Mfrdr- —-3%
0

M

Hence, the work done by the gravitational field dr

force on the particle of mass m, to remove it

to infinity is given by the formula ml 0 / r -
A= mo, since ¢ = 0 at infinity. '

Hence the sought work,

' 4

3ymM
2R
(The work done by the external agent is - A.)
In the solution of problem 1.211, we have obtained ¢ and G due to a uniform shpere, at
a distance r from it’s centre outside it. We have from Egs. (7) and (8) of 1.211,
(p=-x—f—land 5= —XTM?’ (A)
r

Ayoo= -

Accordance with the Eq. (1) of the solution of 1.212, potential due to a spherical shell of
radius a, at any point, inside it becomes

q)-y—a]!- Const. and G,-—%%-ﬂ) (B)

For a point (say P) which lies inside the uniform solid sphere, the potential ¢ at that point
may be represented as a sum.

Pinsiae = P1* P2
where @, is the potential of a solid sphere having radius r and @, is the potential of the
layer of radii r and R. In accordance with equation (A)
M 4 M
Q= ‘%(mgnrs) = —YR—sr2
The potential ¢, produced by the layer (thick shell) is the same at all points inside it. The
potential ¢, is easiest to calculate, for the point positioned at the layer’s centre. Using

Eq. (B)

R
d 3yM, 2 2
P, = -Yf 5 ="3 YE;(R. -r
where d M = ———Ai-—34:rtr2dr= -3—13‘{ P ar
(4/3)®R
is the mass of a thin layer betveen the radii ~ and r +dr.

M r?
Thus P e @1+‘Pz=(12})(3';:) (©)

wms
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From the Eq. G, = ::—r(ﬂ
YMr
G, = e
G _IM_s 4
or PE r Y3ner
M . .
(where p = 7 s the density of the sphere) D)
571'.R3

The plots ¢ () and G (r) for a uniform sphere of radius R are shown in figure of answersheet.

Alternate : Like Gauss’s theorem of electrostatics, one can derive Gauss’s theorem for
. —’ —’ . .-’ .

gravitation in the form j; G-dS=-4nym,,, ., . For calculation of G at a point

inside the sphere at a distance r from its centre, let us consider a Gaussian surface of
radius 7, Then,

G,4nr2- -4ny(}%)r3 o, G = -%r

Hence, E;.I - M;.- _Yg-np;.(as p= —L)

R3 (4/3)nR3
-] R *®
So, (p=fG,dr=f-LA{3— rdr+f—y—1‘2—l-dr
R r
r r R
Integrating and summing up, we get,
.My
¢ 2R R?

And from Gauss’s theorem for outside it :
M

G,4ur2= -4xyM or G, = "IT
r

-]

Thus (p(r)-fG,ds—Y;-M

r
Treating the cavity as negative mass of density — p in a uniform sphere density + p and
using the superposition principle, the sought field strength is :

—- — —

G=G,+G,
or G= —g—nvpi’ + -g‘Yﬂ(-P) r

(Where 7, and 7. are the position vectors of

an orbitrary point P inside the cavity with
respect to centre of sphere and cavity
respectively.)

-

Thus 5-—-in ?-?’-—in l
= -3 vp(+ -)— 3YP
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1.216

1.217

We partition the solid sphere into thin spherical layers and consider a layer of thickness
dr lying at a distance r from the centre of the ball. Each spherical layer presses on the
layers within it. The considered layer is attracted to the part of the sphere lying within it
(the outer part does not act on the layer). Hence for the considered layer

dpanrli=dF

4 .3 2
, 37T Pl@xnr’drp)
o, dP4nr = 1

(where p is the mean density of sphere)

or, dp= g-nypzrdr

R

2x
s p= [ dp= 22y p?@-r)
r

(The pressure.must vanish at r = R.)
o, pm= -g-(l - G*/R%) y M%/ AR, Putiing p = M/(4/3) xR

Putting r = 0, we have the pressure at sphere’s centre, and treating it as the Earth where
mean density is equal to p = 5-5 x 10° kg/m3 and R = 64.x 102 km

we have, p=173x10"Pa or 172 x 10° atms.

(a) Since the potential at each point of a spherical surface (shell) is constant and is equal

top= - XRﬂ’ [as we have in Eq. (1) of solution of problem 1.212]

We obtain in accordance with the equation

U= %fdm(p- %(pfdm

i ym\ _ ym’
2 R 2R

(The factor %is needed otherwise contribution of different mass elements is counted twice.)

(b) In this case the potential inside the sphere depends only on r (see Eq. (C) of the
solution of problem 1.214)

2
P 3ym 1- r
2R 3R?
Here dm is the mass of an elementry spherical layer confined between the radii
r and r+dr:

dm= (4atr2drp)- (%)ﬁdr
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1218 Letw = v Y 35 = circular frequency of the satellite in the outer orbit,
r3.

\ / M,
Wy = YT = circular frequency of the satellite in the inner orbit.
(r-Ar’

So, relative angular velocity = w,+ « where - sign is to be taken when the satellites are
moving in the same sense and + sign if they are moving in opposite sense.
Hence, time between closest approaches

2 2x 1 { 45 days (8 = 0)
= = =1 0-80 hour (6 = 2)
Wyt ® \/;;E—/’m 32Arr+6

where O is 0 in the first case and 2 in the second case.

_YM _ 667 x107" x 596 x 10*

o = 9-8 m/s’
1219 %= o7 (637 x 10°)

2 2
w,= &’ R= (2—") R= ( 2x22 ) 637 10° = 0-034 m/s?

T 24 x 3600 x 7

YMs  667x107 " x 1.97 x 10%

Wy = = 5-9%x107 m/s?
> R2_ (149-50 x 10° x 10%)?

and

Then ®; : 0, : w3 = 1:0-0034: 0-0006

1.220 Let h be the sought height in the first case. so
99 g= yM
100 (R + h)*

T
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1.221

1.222

1.223

-2

or ..2?_. = |1+ E
100 R
From the statement of the problem, it is obvious that in this case & <<R
99 2h R 6400
Thus 100-(1—}() or h= 200=(200)km- 32km

In the other case if 4’ be the sought height, than
-2

-2
g. L 1_(1,.E
> g(1+R) or 3 (1+R
From the language of the problem, in this case A’ is not very small in comparision with R.

Therefore in this case we cannot use the approximation adopted in the previous case.
2

Here, (1+%) =2 So,%-:: 2-1
As - ve sign is not acceptable
B = (V2 -1)R= (V2 -1) 6400 km = 2650 km

Let the mass of the body be m and let it go upto a height A.
From conservation of mechanical energy of the system

_me 1 2 _ -YMm
R +2mvo (R+h)+0

Using %z g, in above equation and on solving we get,

R
ZgR—vo

Gravitational pull provides the required centripetal acceleration to the satelite. Thus if A
be the sought distance, we have

2
my ymM 2
S0, (R+h)- (R+h)2 or, ‘(R+h)v =yM
or, RV +hv*=gR?, as g= %
2 2
Hence h-&g;v;—&z-xli[g‘;-l}

A satellite that hovers above the earth’s equator and corotates with it moving from the
west to east with the diurnal angular velocity of the earth appears stationary to an observer
on the earth. It is called geostationary. For this calculation we may neglect the annual
motion of the earth as well as all other influences. Then, by Newton’s law,
2
(3]

r
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where M = mass of the earth, T = 86400 seconds = period of daily rotation of the earth
and r = distance of the satellite from the centre of the earth. Then

Vo E]

Substitution of M = 5:96 x 10%* kg gives

r= 4220 x 10* km
The instantaneous velocity with respect to an inertial frame fixed to the centre of the earth
at that moment will be

2'-;— r= 307 km/s

and the acceleration will be the centripetal acceleration.

( n ) r= 0223 m/s?
T
We know from the previous problem that a satellite moving west to east at a distance

R = 2:00 x 10* km from the centre of the earth will be revolving round the earth with an
angular velocity faster than the earth’s diurnal angualr velocity. Let

o = angular velocity of the satellite

Wy = 27“ = anuglar velocity of the earth. Then

2n
T

as the relative angular velocity with respect to earth. Now by Newton’s law

2n

So, M-‘Y 1:+T)
T
T

Substitution gives
M= 627x10% kg

The velocity of the satellite in the inertial space fixed frame is V y—ﬁl— east to west. With

respect to the Earth fixed frame, from the 7; -y (W x 1 the velocity is

23R M
v T + R 7-03 km/s

Here M is the mass of the earth and T is its period of rotation about its own axis.
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1.226

It would be - 22K

+ ‘\/ I-R)—w— , if the satellite were moving from west to east.

To find the acceleration we note the formula

—’ —> ’ -
mw =F+2m(V" x®)+maw>R

Here F = - 1?3—1? and v~ L@and v~ x @ is directed towards the centre of the Earth.

2
' IM 2R 1/yM 2n (2=®
Thus w R2+2[—-—T + R T T R

toward the earth’s rotation axis

= 494 m/s? on substitution.

From the well known relationship between the velocities of a particle w.r.t a space fixed
frame (K) rotating frame (K') V=" +(WxF)

, 2n
V= v_(T)R

Thus kinetic energy of the satellite in the earth’s frame

2
T/ = l~mv’f lm(v-anJ

2 2 T

Obviously when the satellite moves in opposite sense comared to the rotation of the Earth
its velocity reldtive to the same frame would be

v, = v+(z—T£)R

And kinetic energy

2
’ 1 ”2 1 2nR
T, FmV Em(v+ T ) )
From (1) and (2)
L 2ERY
T
T’ = 3 ©)
v_ZnR
T
Now from Newton’s second law
me m V2 - M _
I'E R TV V R VgR 4)
Using (4) and (3) -
2
I (VgT +2 ’;R)
2. = 127 nearly (Using Appendices)

T (‘/gT_ZnR)Z
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1227 For a satellite in a circular orbit about any massive body, the following relation holds

1.228

between kinetic, potential & total energy :
T=-E, U=2E 1)

Thus since total mechanical energy must decrease due to resistance of the cosmic dust,

the kintetic energy will increase and the satellite will ‘fall’, We see then, by work energy
theorm

dl = -dE = - cbéf,
So, mvdy = avvdt o, —=—

Now from Netow’s law at an arbitray radius r from the moon’s centre.

(M is the mass of the moon.) Then

where R= moon’s radius. So

Vf 1T
dv a av
7';;,["‘7
v 0
m(l 1 m m
. =L Py -1) - VA -
" o o E eV

where g is moon’s gravity. The averaging implied by Eq. (1) (for noncircular orbits) makes
the result approximate.

From Newton’s second law

my
Y—M-"—'-—-—f’-or v - 167km/s )
R2 (

From conservation of mechanical energy

%mvf—X—A-R{L"-- 0orv= Z%M = 2:37 km/s? (2)
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1.229

1.230

1.231

1.232

In Eq. (1) and (2), M and R are the mass of the moon and its radius. In Eq. (1) if M and
R represent the mass of the earth and its radius, then, using appendices, we can easily get

Vo= 79 km/s and v = 112 km/s.

In a parabolic orbit, E = 0
1 2 YMm M
So >mvi -%-Oor, "i'ﬁvxk—

where M = mass of the Moon, R = its radius. (This is just the escape velocity.)
On the other hand in orbit

mvf2R= yM_zm or Vp= V M
R

R

Thus Av= (1-V2) VYRM = —0-70 km/s.

From 1.228 for the Earth surface

Vo= @ and v, = '\/_2%—1‘7

Thus the sought additional velocity

Av= v, -y, = V -YFM (V2-1)=gR(V2-1)

This ‘kick’ in velocity must be given along the direction of motion of the satellite in its
orbit.

Let r be the sought distance, then

) M

= 38 x10* km.

or Viir=(nR-r) orra‘/ﬁnlf_l

Between the earth and the moon, the potential energy of the spaceship will have a maximum
at the point where the attractions of the earth and the moon balance each other. This
maximum P.E. is approximately zero. We can also neglect the contribution of either body
to the p.E. of the spaceship sufficiently near the other body. Then the minimum energy
that must be imparted to the spaceship to cross the maximum of the P.E. is clearly (using
E to denote the earth)
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YMgm
RE

With this energy the spaceship will cross over the hump in the P.E. and coast down the
hill of p.E. towards the moon and crashland on it. What the problem seeks is the minimum
energy reguired for softlanding. That reguies the use of rockets to loving about the braking
of the spaceship and since the kinetic energy of the gases ejected from the rocket will
always be positive, the total energy required for softlanding is greater than that required
for crashlanding. To calculate this energy we assume that the rockets are used fairly close

to the moon when the spaceship has nealy attained its terminal velocity on the moon

1 / M,
L 2 where M, is the mass of the moon and R, is its radius. In general
0

dE = vdp and since the speed of the ejected gases is not less than the speed of the rocket,
and momentum transfered to the ejected gases must equal the momentum of the spaceship

the energy E of the gass ejected is not less than the kinetic energy of spaceship

YMm
RO

Addding the two we get the minimum work done on the ejected gases to bring about
the softlanding.

A M, M,
mn =V RE+R0

On substitution we get 1-3 x 10° kJ.

Assume first that the attraction of the earth can be neglected. Then the minimum velocity,
that must be imparted to the body to escape from the Sun’s pull, is, as in 1-230, equal to

(V2 -1)v,

where "12 = YM_ /r, r = radius of the earth’s orbit, M, = mass of the Sun.

In the actual case near the earth, the pull of the Sun is small and does not change much
over distances, which are several times the radius of the Earth. The velocity v; in question
is that which overcomes the earth’s pull with sufficient velocity to escape the Sun’s pull.
Thus

1, Y™M; 2.2
-imvs—-R— EM(JZ— 1) Vl

where R = radius of the earth, M, = mass of the earth.

Writing v12 = YM; /R, we get

vim V2024 (V2 -1) v} = 166 km/s
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1.5 DYNAMICS OF A SOLID BODY

1.234

1.235

1.236

1.237

Since, motion of the rod is purely translational, net torque about the C.M. of the rod
should be equal to zero.

Thus Flé- Fz(—;-—a)or,%- 1-1—}'5 )
For the translational motion of rod.
F, mw,
F,-F,= mw, or 1—172- 7, )
From (1) and (2)
a mw 2
3" cm of, I= p—y =1m

Sought moment I_V’- 73(1_".- (ai_:- bj_;x (Ai_-: Bf;
= aBk+Ab(-K)= (aB-Ab)K

N aB-Ab
and arm of the force I= — ———
F VAT+B?

Relative to point O, the net moment of force :
- i AP P Tyl
N=r xF +r,xF,= (aixAj)+(BjxBi)

—> - —»
= agbk+AB(-k)= (ab-AB)k 1)
Resultant of the external force
— -  —p - -
F- 1+F2. A]"i‘Bl (2)
— —» - — —
As N-F= 0 (as N LF) so the sought arm [ of the force F
1= N/F~ 22-4B

VA? + B?

- - - —»
For coplanar forces, about any point in the same plane, 2 r;xF;=rxF,,

—» —
(where I_?; = 2 I—": = resultant force) or, N, = r F,,

N
Thus length of the arm, /= T

net

Here obviously -Ii"’,,, | = 2F and it is directed toward right along AC. Take the origin at C. Then
about C,

V2
(Here a = side of the square.)
Thus IV = F 7% directed into the plane of the figure.
F(a/V2) a a . e
Hence I= oF 3v3 ~ o Sin 45
Thus the point of application of force is at the mid point of the side BC.

N=|[VZaF+%F-VvIaF ) directed normally into the plane of figure.
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(a) Consider a strip of length dx at a perpendicular distance x from the axis about which
we have to find the moment of inertia of the rod. The elemental mass of the rod equals

dm-—';-‘-dx

Moment of inertia of this element about the axis
dl= dnx?= 1;'— dx-x?

Thus, moment of inertia of the rod, as a whole
about the given axis
1
2
m 2 ml
d f 7* A=

o

(b) Let us imagine the plane of plate as xy
plane taking the origin at the intersection point

of the sides of the plate (Fig.). 0 VA B
Obviously I= f dm y2 x dx
a
m 2
- f ( ab bdy ) Y
0
. m a’
3
2
Similarly I = l’-sg—

Hence from perpendicular axis theorem

m, 2 2
L=1I+l=3 (a +b )
which is the sought moment of inertia.

(a) Consider an elementry disc of thickness dxr. Moment of irertia of this element about
the z —-axis, passing through its C.M.

2
a, B oy B — a ——

2 C — T—)
where p = density of the material of the plate by
and S = area of cross section of ithe plate.

Thus the sought moment of inertia ‘ b
b

2 2
1 [ a By
0

zx

> pr‘(asS- :rcR2)
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putting all the vallues we get, I, = 2- gm-m2

(b) Consider an element disc of radius r and
thickness dx at a distance x from the point
O. Then r = x tana and volume of the disc

L
2, 2
= x“tan“ o dx ?

Hence, its mass dm = thztana_dx-p (where 1\
. 1 2 1’
=d f = —

p = density of the cone m/3 ®"R°h) b ax

Moment of inertia of this element, about the A

axis OA,

2
r
dl = dm >
2. 2
= (nxztanzadx)x——u;—n-g—
= %Bx *tan ‘o dx

h

Thus the sought moment of inertia [ = ZEZR tan* o f x*tdx
0

% pR N
= 3 as tana = —
10h
- 3mR? : 3m
Hence I= 10 (puttmg p= RZ h)

(a) Let us consider a lamina of an arbitrary shape and indicate by 1,2 and 3, three axes
coinciding with x, y and z - axes and the plane of lamina as x -y plane.

Now, moment of mertla of a point mass about

- axis, dI_ = dmy g( A} )
Thus moment of inertia of the lamina about
this axis, [, = f dmy

X
- @)
Similarly, I, = f dmx*? g{
and [, = f dmr?
7 (r, N

—fdm(x +y%) as r=Vx +y (1)
Thus, I=1 +I or, ;=1 +1,

(b) Let us take the plane of the disc as x —y plane and origin to the centre of the disc
(Fig.) From the symmetry /, = 1. Let us consider a ring element of radius r and thickness

dr, then the moment of inertia of the ring element about the y — axis.
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dl,= dmr® = 2 (2mrdr)r? A Y
R z
Thus the moment of inertia of the disc about
Z - axis
R
2
I,= 2—”; ridre= mR~
R 2
0 0 >
But we have L=1I1+I=2I
I R dx
z_mR_
Thus I= > )

For simplicity let us use a mathematical trick. We consider the portion of the given disc
as the superposition of two. complete discs (without holes), one of positive density and
radius R and other of negative density but of same magnitude and radius R/2.

As (area) o (mass), the respective masses of the considered discs are
(4m /3) and (- m/3) respectively, and these masses can be imagined to be situated at
their respective centers (C.M). Let us take point O as origin and point x — axis towards
right. Obviously the C.M. of the shaded position of given shape lies on the x — axis. Hence
the C.M. (C) of the shaded portion is given by

(-m/3)(-R/2)+(4m/3)0 g

Xe = (-m/3)+4m/3 a3

Thus C.M. of the shape is at a distance R/6
from point O toward x — axis

Using parallel axis theorem and bearing in mind
that the moment of inertia of a complete
homogeneous disc of radius m, and radius r,

equals %mo rl. The moment of inetia of the

small disc of mass (- m/3) and radius R/2
about the axis passing through point C and
perpendicular to the plane of the disc

L .1(_m\(RY (_m\(R R
720 312 3 /12 6
mR? 4 2
" ™
2
o _1(dm)\pa (4m)(R
Similarly L= 2( 3 )R +( 3 )(6)
2 .2 mR?
3mR 27
Thus the sought moment of inertia,
15 37

le=lhethe= zgmR* -5 72
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1.242 Moment of inertia of the shaded portion, about the axis passing through it’s certre,

_2 4 53 2 2(4 3 3
1—3-(3J'[R p)R -5(3m p)r

Now, if R = r + dr, the shaded portion becomes
a shell, which is the required shape to calculate

the moment of inertia.
2 4

Now, I= -3

(r+dr)5--r5
l ;

=§-§np<r5+5r4dr+ ...... -r5)

Neglecting higher terms.

= %(tmrzdrp)rz- %mr2

1.243 (a) Net force which is effective on the system (cylinder M +body m ) is the weight of
the body m in a uniform gravitational field, which is a constant. Thus the initial acceleration

of the body m is also constant.

From the conservation of mechanical energy of the said system in the uniform field of

gravity at time t= At : AT+ AU= 0

1,2, 1MR?
or Smvies =0 -mgAh=10
or, %(2m+M)v2—mgAh-0[as v= @R at all times ]
But vie 2w AR

Hence using it in Eq. (1), we get

1 , 2mg
4(2m+M)2wAh—mgAh== 0orws= (Zm + M)

w__ 2mg

From the kinematical relationship, f = R~ (2m+M)R

Thus the sought angular velocity of the cylinder

2mg gt
w(t)=Br= MR (T+M/2m)R

(b) Sought kinetic energy.

2
T(t)= %mv2+%b—%l—w2= :11—(2m+M)R2oo2
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1.245

1.246
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For equilibrium of the disc and axle
2T=mg or T= mg/2
As the disc unwinds, it has an angular acceleration § given by

IB=2Tr or p= 2. ME”
I I
The corresponding linear acceleration is — <
2
rB=we ME AT AT

’ s
Since the disc remains stationary under the a_l

combined action of this acceleration and the
acceleration (-w) of the bar which is
transmitted to the axle, we must have ‘mg

mgr®
I

W=

Let the rod be deviated through an angle @’from its initial position at an arbitrary instant
of time, measured relative to the initial position in the positive direction. From the equation
of the increment of the mechanical energy of the system.

AT= A,
or, lIco2=f1v'qu>
2
L 4
or, —;—%im2=fFlcoqud(p = Flsingp
Thus, W = 6F sing

Mi

First of all, let us sketch free body diagram of each body. Since the cylinder is rotating
and massive, the tension will be different in both the sections of threads. From Newton’s
law in projection form for the bodies m, and m, and noting that w, = w, = w= PR, (as

no thread slipping), we have (m, > m,) Y.
and T,-my 8= myw 1) O/‘
Now from the equation of rotational dynamics \ T,
of a solid about stationary axis of rotation. i.e. T 2
N, = I8, for the cylinder.
o, (T,-T,)R=1Ip = mR*p/2 )

7; A T..?

Similtaneous solution of the above equations yields :

B= an =
R(m1+m2+1n—] T, my(m+dm) my. W

2
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1.247

1.248

As the systent (m +m,; + m,) is under constant forces, the acceleration of body m, an
m, is constant. In addition to it the velocities and accelerations of bodies m, and m, a1
equal in magnitude (say v and w) because the length of the thread is constant.
From the equation of increament of mechanical energy i.e. AT + AU = A, at time { whe
block m, is distance & below from initial position corresponding to = 0,

1(mR?\ v?

1
5(m1+%)v2+5(T)F-ngh' ~km, gh ¢

(as angular velocity ® = v/R for no slipping of thread.)
But vZ=2wh
So using it in (1), we get

- 2(my—km,)g
m+2(m +m,)”

@
Thus the work done by the friction force on m,

Af = —kmgh= "1‘7”18(%“"2)

2.2
=_km1(m1—km1)g t (using 2)
m+2(m;+m,) £ <)

In the problem, the rigid body is in translation equlibrium but there is an anguiar retardation.
We first sketch the free body diagram of the cylinder. Obviously the friction forces, acting
on the cylinder, are kinetic. From the condition of translational equlibrium for the cylinder,

mg= Nl+kN2; NZ- kNl

m m
Hence, N, = I—:%i; N,=k ] +i2

For pure rotation "of the cylinder about its

rotation axis, N, = If, A
mR 2 2
or, —kNlR—kN2R=TBz KNy, @
7,
2
o, - KmsR(1+k) mR? g Z
1+k? 2 7 ;
o . _2k(u2k)s 7
(t+k%)R 7 4
KN,

Now, from the kinematical equation,

w?= of +2B,Ap we have,

ol(1+k*)R
dk(1+k)g ’

because w = 0
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Hence, the sought number of turns,
2 2
e Ap _ wy (1+k°)R
2n  8nk(1+k)g

1.249 It is the moment of friction force which brings the disc to rest. The force of friction is
applied to each section of the disc, and since these sections lie at different distances from
the axis, the moments of the forces of friction differ from section to section.

To find N,, where z is the axis of rotation of the disc let us partition the disc into thin
rings (Fig.). The force of friction acting on the considered element
dfr=k(2nrdro)g, (where o is the density of the disc)
The moment of this force of friction is

dN,= -rdfr= —Zthogrzdr

z
Integrating with respect to r from zero to R, we get
R

N, = —2nk0gfr2dr= --g—nkogRs.
0

For the rotation of the disc about the stationary
axis z, from the equation N, = I,

2 3 (nR’0)R? 4kg
3th0gR = > B, or B, 3R

Thus from the angular kinematical equation

w,= wy, +P,¢t

3Rw
O=(o0+( f‘-’—c&)t or t= °

" 3R dkg

1.250 According to the question,
1% . e or, =92 _kar

dt Vo
Integrating, Yo = - % + Vau,
2,2
or, = k41t2 —‘/@I_‘kt + w,, (Noting that at £ = 0, w = w,.)

21V,

Let the flywheel stops at 7 = £, then from Eq. (1), ¢, =

k
Hence sought average angular velocity
2V B
k
k2t®> Voo kt
a1 1
0 Wy
<®>= = —

k

[a

0
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1.251

1.252

dM
Let us use the equation _Ht_z = N, relative to the axis through O 1)
For this purpose, let us find the angular momentum of the system M, about the given

rotation axis and the corresponding torque N,. The angular momentum is

M, = Iw + mvR = (—2—+m)R [0}

m
[where I = TORZ and v= w R (no cord slipping)]

aM. 2
So, - (Mf +mR2)ﬁz )

The downward pull of gravity on the overhanging part is the only external force,
which exerts a torque about the z -axis, passing through O and is given by,
m

N,= ( ] )ng

dJWzN
dt—z

Hence from the equation

2
MR +mR? B, = -’-n-ng
2 1
Thus, - mgx

Z IR(M+2m)

Note : We may solve this problem using conservation of mechanical energy of the system’
(cylinder + thread) in the uniform field of gravity.

(a) Let us indicate the forces acting on the sphere and their points of application. Choose
positive direction of x and @ (rotation angle) along the incline in downward direction and
in the sense of @ (for undirectional rotation) respectively. Now from equations of dynamics
of rigid body i.e. F,= mw_ and N_= I f we get:

mgsino - f, = mw @)
and frR= -Sz-mRzﬁ )
But fr s kmg cosa 3)

In addition, the absence of slipping provides
the kinematical realtionship between the
accelerations :

w= PR )
The simultaneous solution of all the four
equations yields :

kcos az %—sina, or k= %tana

(b) Solving Egs. (1) and (2) [of part (a)], we get :
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W= Sgsina.

As the sphere starts at t= 0 along positive x
axis, for pure rolling
v.()= w, t= -g—gsinat &)
Hence the sought kinetic energy
2 12

1 12 52 2 7 2 .
T 2mvc+25m}('u) 10mvc(asm v/R)

2

7 S . 3 . 2
- Em(,]gsmat) - 14mg28m at

2

(a) Let us indicate the forces and their points of application for the cylinder. Choosing
the positive direction for x and @ as shown in the figure, we write the equation of motion
of the cylinder axis and the equation of moments in the C.M. frame relative to that axis
i.e. from equation F, = mw_, and N,= I .

mR 2
> B

mg-2T= mw,; 2IR =

As there is no slipping of thread on the cylinder
w.= R
From these three equations

-7 -28, 2 rad/s?
T=Z8= 13N, = &= 5x102madss

So, w, = —g—g>0 or, in vector form E:.. %é’

P=F-v=F-(w.1)
=Y P AR
=mg 3gt 3mgt

Let us depict the forces and their points of application corresponding to the cylinder attached
with the elevator. Newton’s second law for solid in vector form in the frame of elevator,
gives :

2T+ mg e m(-wy) = mw (1) T T

@
The equation of moment in the C.M. frame
relative to the cylinder axis i.e. from OO ))) , ))D

Nz' Ic B -
z ) , ,mg. T‘Wo
mR mR*w
2IR= —fB = ——
2 2 R mWe

[as thread does not slip on the cylinder, w' = @R ]
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or, T = %
As () TH W
so in vector form
-
T=-"7 @)

Solving Egs. (1) and (2), W = %—@’ — w,) and sought force
F=2T- $m@-w).

Let us depict the forces and their points of application for the spool. Choosing the positive
direction for x and ¢ as shown in the fig., we apply F,= mw_ and N_;= I_PB, and get

0

mgsina-T=mw; Tr = If
“Notice that if a point of a solid in plane motion
is connected with a thread, the projection of
velocity vector of the solid’s point of contact
along the length of the thread equals the velocity
of the other end of the thread (if it is not
slacked)”

Thus in our problem, V,= Vo but v =0,

hence point P is the instantaneous centre of
rotation of zero velocity for the spool. Therefore

v.= wr and subsequently w, = fr. A W
Solving the equations simultaneously, we get 7
- £ - 16mys :;n
1+— 4
mr

Let us sketch the force diagram for solid cylinder and apply Newton’s second law in
projection form along x and y axes (Fig.) :

fro+fry=mw, 6y
and N, +N,-mg-F=0
or N,+N,=mg+F ()

Now choosing positive direction of ¢ as shown
in the figure and using N_,= I_fB,,

we get

2 2
FR - (fr + fryR="2-p= 22 (3)

[as for pure rolling w, = BR ]. In addition to,
fri+ frysk(N;+N,) ©)) 'mg
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Solving the Egs., we get

(2-3k)° max  2-.3k%
k(N1 +N2)
and We (max) ™ -

L3 k 3kmgl_  2kg
m 78+ Froax | m[mg+2—3k] 2 -3k

(a) Let us choose the positive direction of the rotation angle @, such that w_ and §, have
identical signs (Fig.). Equation of motion, F, = mw_ and N_= I_f, gives :
Fcosa-fr=mw,:frR-Fr=10,= ymR 2 B,

In the absence of the slipping of the spool w_ = B, R
Flcosa-(r/R)]
m(1l+y)

(b) As static friction (fr) does not work on

the spool, from the equation of the increment
of mechanical energy A, = AT.

2

v
A, = %mvf+%ymR2R%= %m(l +Y) V.

, Where cos a > 1% (1)

From the three equations w_, = w,_ =

P

1 _1 1. 2
= 2m(l +Y) 2w, x = 2m(1+y)2wc(2wct )

2
F? (cosa - ﬁ) #
2m(+y)
Note|that at cos a.= r/R, there is no rolling and for cos a <r/R, w_ <0, i.e. the spool
will move towards negative x-axis and rotate in anticlockwise sense.

For the cylinder from the equation N, = I, about its stationary axis of rotation.

2Tr= '”—2'2-5 or ﬁ=:l—€ )

For the rotation of the lower cylinder from the
equation N, = I_f,

2
mre _, , 4T
2Tr = > g’ or, ﬁ_mr_

p

Now for the translational motion of lower
cylinder from the Eq. F, = mw_, :
mg-2T= mw, )
As there is no slipping of threads on the
cylinders :
w,=B'r+pr=2pr 3)
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Simultaneous solution of (1), (2) and (3) yields

- 8
T 10"

Lst us depict the forces acting on the pulley
and weight A, and indicate positive direction e T A
for x and ¢ as shown in the figure. For the
cylinder from the equation F_= m W and

N_,=18, we get

Mg+T,-2T= Mw, ¢))
Iw,
and 2TR+TA(2R)=Iﬁ-'—R— ) D
For the weight A from the equation
F = mw,
mg-T,=mw, 3)

As there is no slipping of the threads on the
pulleys.

w,=w +2pR=w. +2w = 3w, 4
Simultaneous solutions of above four equations
gives :

3(M+3m)g

AT I
(M +9m+ ——2)

R

(a) For the translational motion of the system (m + m,), from the equation : F_ = mw_
F=(m +myw, or, w.=F/(m +m,) 1)

Now for the rotational motion of cylinder from the equation : N_ = I_f,

m,r’ 2F

Fr= > p or Pr= m, 2)

But W= w.+Br, So
F 2F F(3m;+2m,)

W= += = 3)

m +m, m m; (m; + m,)
(b) From the equation of increment of mechanical energy : AT = A_,
Here AT=T(), so, T()=A_,
As force F is constant and is directed along x-axis the sought work done.

A= Fx

(where x is the displacement of the point of application of the force F during time interval t)
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Ft*(Gm +2m)
2m;(m; +m,)
(using Eq. (3)

Alternate : T(1) = T, ,c000n O+ 1,00 (D

= T(t)

= F(%th2

(my +m,) 272 mr 2m; (m,, m,)

2
l(m +m)( Ft )2 lmlrz(zpt) F2t2(3m1+2m2)

Choosing the positive direction for x and ¢ as shown in Fig, let us we write the equation
of motion for the sphere F, =mw_, and N_=1_8,

2
fr=m,w,; frrsgmzrzﬁ

(w, is the acceleration of the C.M. of sphere.) “P
For the plank from the Eq. F, = mw, G‘* X
F-fi=mw,
In addition, the condition for the absence of ,fr
slipp.ing of the sphere yields the kinematical fr m b
relation between the accelerations :

w =w,+fpr I 7777777

Simultaneous solution of the four equations yields :

F 2
Wi=r—> and Wy =W
(a) Let us depict the forces acting on the cylinder and their point of applications for the
cylinder and indicate positive direction of x and ¢ as shown in the figure. From the
equations for the plane motion of a solid F,= mw_ and N_= I B, :
kmg=mw_ or w_= kg 1)
2
_kmgR="Rg" or p--2% )
2 R
Let the cylinder starts pure rolling atz = f,after
releasing on the horizontal floor at t = 0.
From the angular kinematical equation ¢
w,= w,+p,¢ G—-)» X
k
-ay-221¢ 3
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